TSDuck Userls Guide

Thierry Lelégard

Version 3.39-3922, November 2024

TSDuck Useris Guide Version 3.39-3922

Contents
Preface 17
1. Transport Stream Toolkit Overview 19
1.1. Operating system selection guidelines 19
1.2. Developing applications using the TSDuck library 19
1.3. Installing TSDuck 20
1.3.1. Windows 20
1.3.2. Linux 21
1.3.3. macOS 21
1.3.4. BSD systems 21
2. Data Formats 22
2.1. Transport stream 22
2.1.1. Live transport streams 22
2.1.2. Stored transport streams 22
2.2. Bitrates 23
2.2.1. Interpretation 23
2.2.2. Representation 23
2.2.3. Specifying bitrate in command lines 24
2.2.4. Rebuilding with a different bitrate representation 24
2.3. PSI/SI signalization 24
2.3.1. PSI/SI binary format 25
2.3.1.1. Creating PSI/SI binary files 25
2.3.1.2. Using PSI/SI binary files 25
2.3.2. PSI/SI XML format 25
2.4. Compatibility and conflicts between standards 26
2.4.1. Supported standards 26
2.4.2. TSDuck options for default standard selection 27
2.5. Character sets 29
2.5.1. Standards and character sets 29
2.5.2. TSDuck options for character sets 30
2.5.3. Character set names 31
2.6. XML files 33
2.6.1. Usage of XML files in TSDuck 33
2.6.2. Inline XML content 33
2.6.3. XML model files 33
2.6.4. XML patch files 34
2.6.4.1. Structure matching 34
2.6.4.2. Special attributes 36
2.6.4.3. Attribute patching 36
2.6.4.4. Element patching 36
2.6.4.5. Examples 37
2.6.4.6. Symbols and conditions 37
2.7.JSON and "normalized" report formats 38
2.7.1. "Normalized" reports 38

Version 3.39-3922

2.7.2.JSON files
2.7.3. Automated XML-to-JSON conversion

3. Transport Stream Utilities
3.1. Command line syntax

3.1.1. Command line options
3.1.2. Integer values in command line options
3.1.3. Predefined common options
3.1.4. Using a pager command
3.1.5. Partial command line redirection from a file
3.1.6. Default options from the TSDuck configuration file

3.1.7. Bash command line completion

3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10
3.11

3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.
3.23.
3.24.
3.25.
3.26.
3.27.
3.28.
3.29.
3.30.
3.31.
3.32.
3.33.
3.34.

2.7.3.1. Conversion rules
2.7.3.2. TSDuck options for automated XML-to-JSON conversion

tsanalyze
tsbitrate
tscharset
tscmp
tsconfig
tscrc32
tsdate
tsdektec

. tsdump
. tsecmg
tseit
tsemmg
tsfclean
tsfixcc
tsftrunc
tsfuzz
tsgenecm
tshides

tslsdvb

tsp
tspacketize
tspcap
tspcontrol
tspsi
tsresync
tsscan
tssmartcard
tsstuff
tsswitch
tstabcomp
tstabdump

tstables

tslatencymonitor

TSDuck Userls Guide

39
39
39
40
42
43
43
43
44
45
45
46
46
48
57
59
61
64
66
67
69
75
79
82
86
89
91
93
94
96
98
100
102
104
115
118
121
123
127
129
134
136
138
144
148
152

TSDuck Useris Guide

3.35.
3.36.
3.37.
3.38.
3.39.

tsterinfo
tstestecmg
tsvatek
tsversion

tsxml

4. TSP Plugins

4.1. aes

4.2. analyze
4.3. bat

4.4, bitrate_monitor
4.5. boostpid
4.6. cat

4.7. clear

4.8. continuity

4.9. count

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.
4.28.
4.29.
4.30.
4.31.
4.32.
4.33.
4.34.
4.35.
4.36.
4.37.
4.38.
4.39.
4.40.

craft (input)

craft (packet processing)
cutoff

datainject

decap

dektec (input)

dektec (output)
descrambler

drop (output)

dump

duplicate

dvb (input)

eit

eitinject

encap

feed

file (input)

file (output)

file (packet processing)
filter

fork (input)

fork (output)

fork (packet processing)
fuzz

hides (output)

history

hls (input)

hls (output)

http (input)

http (output)

inject

Version 3.39-3922

160
163
165
166
169
173
176
179
184
186
189
190
192
194
196
198
200
203
206
208
209
213
223
227
228
230
232
241
242
249
253
255
257
259
261
266
267
268
270
272
274
276
279
282
284
285

Version 3.39-3922

4.41.
4.42.
4.43.
4.44,
4.45.
4.46.
4.47.
4.48.
4.49.
4.50.
4.51.
4.52.
4.53.
454,
4.55.
4.56.
4.57.
4.58.
4.59.
4.60.
4.61.
4.62.
4.63.
4.64.
4.65.
4.66.
4.67.
4.68.
4.69.
4.70.
4.71.
4.72.
4.73.
4.74.
4.75.
4.76.
4.77.
4.78.
4.79.
4.80.
4.81.
4.82.
4.83.
4.84.
4.85.
4.86.

ip (input)
ip (output)

ip (packet processing)

limit

memory (input)

memory (output)

merge
mpe
mpeinject
mux

nit

nitscan

null (input)
pat

pattern
pcap (input)
pcradjust
pcrbitrate
pcrcopy
pcredit
pcrextract
pcrverify
pes

pidshift
play (output)
pmt

psi
psimerge
reduce
regulate
remap

rist (input)
rist (output)
rmorphan
rmsplice
scrambler
sdt

sections
sifilter

skip

slice
spliceinject
splicemonitor
srt (input)
srt (output)

stats

TSDuck Userls Guide

289
292
295
298
300
301
302
306
309
312
315
318
321
322
324
326
329
331
333
335
337
339
341
344
347
348
352
356
358
360
362
364
366
368
370
372
377
380
383
386
387
389
393
396
401
406

TSDuck Useris Guide

4.87. stuffanalyze

4.88. svremove

4.89. svrename

4.90. svresync
4.91. t2mi
4.92. tables
4.93. teletext
4.94. time
4.95. timeref
4.96. timeshift

4.97. trigger

4.98. tsrename
4.99. until
4.100. vatek (output)
4.101. zap
5. Usage Examples
5.1. TSDuck utilities

51.1.
5.1.2.
5.1.3.
5.1.4.
5.1.5.
5.1.6.
51.7.
5.1.8.
5.1.9.

tsdektec examples
tslsdvb examples
tsscan examples
tssmartcard examples
tsterinfo examples
tshides examples
tsswitch examples
tsxml examples

tsscan using a tuner emulator

5.1.10. tspcap examples

5.2. TSP examples

5.2.1.
5.2.2.
5.2.3.
5.2.4.
5.2.5.
5.2.6.
5.2.7.
5.2.8.
5.2.9.

Capturing a TS from an external source

Routing a TS between several physical transports
Using IP multicast

Regulating the output speed

Scheduling the recording of a program
Extracting selected packets

Monitoring selected MPEG tables (here, EMMIis)
Scanning all services by CAS operator

On-the-fly replacement of an Sl table

5.2.10. Performing the global analysis of a transponder

5211
5.2.12
5.2.13

. Performing the global analysis of a network
. Monitoring the stuffing rate of all transponders in a network

. Analyzing the bitrate of all services in a network

5.2.14. Analyzing the number of PCR per second

5.2.15
5.2.16
5.2.17
5.2.18

. Injecting a System Software Update (SSU) service
. Analyzing EPG data
. Analyzing audio and video attributes

. Conditional Access System scrambling and ECM functional tests

Version 3.39-3922

408
410
412
414
416
418
426
428
430
432
434
436
438
440
444
447
447
447
448
449
451
452
453
454
455
456
459
460
461
461
461
462
462
463
463
464
465
465
467
469
470
471
472
474
475
476

Version 3.39-3922

5.2.19. Complete Conditional Access System test bed

5.2.20. Emulation of a Conditional Access head-end

5.2.21. Multi-Protocol Encapsulation (MPE)

5.2.21.1. MPE insertion in an existing transport stream
5.2.21.2. Creating a transport stream from scratch

5.2.21.3. Creating a transport stream from scratch with PCR

5.2.22. DVB-T2 Modulator Interface (T2-Ml)

5.2.23. Merging transport streams

5.2.24. Injecting SCTE 35 cue information
5.2.24.1. Real-time live stream

5.2.24.2. Cue insertion in offline files

5.2.25. Encapsulating PIDis into a private tunnel
5.2.26. Interleaving input files and merging their PSI
5.2.27. Using Secure Reliable Transport (SRT) transmission

5.2.28. Preserving EITis through ffmpeg processing

5.2.29. JSON analysis of a transport stream
5.2.30. Monitoring the bitrate of a PID
6. Troubleshooting
6.1. Environment variables
6.1.1. Search paths
6.1.2. Web requests retry policy
6.2. Typical issues with TSP
7. Hardware Device Support
7.1. Tuner receiver devices (DVB, ATSC, ISDB)
7.1.1. Overview
7.1.2. Operating system integration
7.1.2.1. Linux platforms
7.1.2.2. Microsoft Windows platforms
7.1.2.3. macOS platforms
7.1.3. Device naming
7.1.3.1. Linux platforms
7.1.3.2. Microsoft Windows platforms
7.1.4. Tuner emulator
7.1.4.1. Principles
7.1.4.2. Tuner emulator XML file
7.1.5. Tested devices
7.2. Dektec devices
7.2.1. Overview
7.2.2. Microsoft Windows platforms
7.2.3. Linux platforms
7.2.4. macOS platforms
7.2.5. Tested devices
7.3. HiDes devices
7.3.1. Overview
7.3.2. Linux platforms

7.3.3. Microsoft Windows platforms

TSDuck Userls Guide

476
478
481
481
485
486
488
490
492
492
494
494
495
496
497
498
499
502
502
503
503
504
505
505
505
505
505
506
507
507
507
508
508
509
509
510
513
513
514
514
514
514
515
515
515
516

TSDuck Useris Guide

7.3.4. macOS platforms

7.3.5. Tested devices

7.3.6. Power constraints
7.4. VATek-based modulators

7.4.1. Overview

7.4.2. Tested devices

Appendix A: Userls Configuration File

A.1. Configuration file location
A.2. Configuration file format
A.3. LNB names
A.4. HF band region names
A.5. Sample configuration files

A.5.1. Generic example

A.5.2. Using TSDuck on Japanese ISDB transport streams

Appendix B: Channels Configuration File
B.1. File usage
B.2. Channel configuration file format
B.3. Tuning parameters
B.3.1. ATSC
B.3.2. DVB-C
B.3.3. DVB-S
B.3.4. DVB-T
B.3.5. ISDB-T
B.3.6. ISDB-S
Appendix C: Monitoring Configuration File
C.1. Resource monitoring in TSDuck
C.2. Resource monitoring configuration file format
C.3. Default resource monitoring configuration
Appendix D: PSI/SI XML Reference Model
D.1. PSI/SI file format
D.1.1. XML file structure
D.1.2. Table metadata
D.2. MPEG-defined tables
D.2.1. Conditional Access Table (CAT)
D.2.2. DSM-CC Stream Descriptors Table
D.2.3. Program Association Table (PAT)
D.2.4. Program Map Table (PMT)
D.2.5. Transport Stream Description Table (TSDT)
D.3. DVB-defined tables
D.3.1. Application Information Table (AIT)
D.3.2. Bouquet Association Table (BAT)
D.3.3. Content Identifier Table (CIT)
D.3.4. Discontinuity Information Table
D.3.5. Event Information Table (EIT)
D.3.6. IP/MAC Notification Table (INT)
D.3.7. Network Information Table (NIT)

Version 3.39-3922

517
517
517
517
517
517
518
518
518
519
520
521
521
521
523
523
523
524
524
524
524
524
525
525
526
526
526
527
529
529
529
529
530
530
530
530
530
531
531
531
531
532
532
532
533
533

Version 3.39-3922 TSDuck Userls Guide

D.3.8. Related Content Table (RCT) 534
D.3.9. Resolution provider Notification Table (RNT) 535
D.3.10. Running Status Table (RST) 535
D.3.11. Satellite Information Table (SAT) 535
D.3.12. Selection Information Table (SIT) 538
D.3.13. Service Description Table (SDT) 539
D.3.14. Time and Date Table (TDT) 539
D.3.15. Time Offset Table (TOT) 539
D.3.16. Update Notification Table (UNT) 539
D.4. SCTE-defined tables 540
D.4.1. Cable Emergency Alert Table (SCTE 18) 540
D.4.2. Splice Information Table (SCTE 35) 541
D.5. ATSC-defined tables 542
D.5.1. Cable Virtual Channel Table (CVCT) 542
D.5.2. Directed Channel Change Selection Code Table (DCCSCT) 543
D.5.3. Directed Channel Change Table (DCCT) 544
D.5.4. Event Information Table (EIT) 544
D.5.5. Extended Text Table (ETT) 545
D.5.6. Master Guide Table (MGT) 545
D.5.7. Rating Region Table (RRT) 546
D.5.8. System Time Table (STT) 546
D.5.9. Terrestrial Virtual Channel Table (TVCT) 547
D.6. ISDB-defined tables 547
D.6.1. Broadcaster Information Table (BIT) 547
D.6.2. Common Data Table (CDT) 548
D.6.3. Download Control Table (DCT) 548
D.6.4. DownLoad Table (DLT) 548
D.6.5. Event Relation Table (ERT) 549
D.6.6. Index Transmission information Table (ITT) 549
D.6.7. Linked Description Table (LDT) 549
D.6.8. Local event Information Table (LIT) 550
D.6.9. Network Board Information Table (NBIT) 550
D.6.10. Partial Content Announcement Table (PCAT) 551
D.6.11. Software Download Trigger Table (SDTT) 551
D.7. MPEG-defined descriptors 552
D.7.1. af_extensions_descriptor 552
D.7.2. association_tag_descriptor 552
D.7.3. audio_stream_descriptor 552
D.7.4. auxiliary_video_stream_descriptor 552
D.7.5. AVC_timing_and_HRD_descriptor 553
D.7.6. AVC_video_descriptor 553
D.7.7. CA_descriptor 553
D.7.8. carousel_identifier_descriptor 554
D.7.9. content_labelling_descriptor 554
D.7.10. copyright_descriptor 554
D.7.11. data_stream_alignment_descriptor 554

TSDuck Useris Guide

10

D.7.12.
D.7.13.
D.7.14.
D.7.15.
D.7.16.
D.7.17.
D.7.18.
D.7.19.
D.7.20.
D.7.21.
D.7.22.
D.7.23.
D.7.24.
D.7.25.
D.7.26.
D.7.27.
D.7.28.
D.7.29.
D.7.30.
D.7.31.
D.7.32.
D.7.33.
D.7.34.
D.7.35.
D.7.36.
D.7.37.
D.7.38.
D.7.39.
D.7.40.
D.7.41.
D.7.42.
D.7.43.
D.7.44.
D.7.45.
D.7.46.
D.7.47.
D.7.48.
D.7.49.
D.7.50.
D.7.51.
D.7.52.
D.7.53.
D.7.54.
D.7.55.
D.7.56.
D.7.57.

deferred_association_tags_descriptor
EVC_timing_and_HRD_descriptor
EVC_video_descriptor
external_ES_ID_descriptor
FMC_descriptor
green_extension_descriptor>
HEVC_hierarchy_extension_descriptor
HEVC_operation_point_descriptor
HEVC_subregion_descriptor
HEVC_tile_substream_descriptor
HEVC_timing_and_HRD_descriptor
HEVC_video_descriptor
hierarchy_descriptor

IBP_descriptor

10D_descriptor
ISO_639_language_descriptor
J2K_video_descriptor
JPEG_XS_video_descriptor
LCEVC_linkage_descriptor
LCEVC_video_descriptor
M4MuxBufferSize_descriptor
m4mux_timing_descriptor
maximum_bitrate_descriptor
Media_service_kind_descriptor
metadata_descriptor
metadata_pointer_descriptor
metadata_STD_descriptor
MPEG2_AAC_audio_descriptor
MPEGZ2_stereoscopic_video_format_descriptor
MPEG4_audio_descriptor
MPEG4_audio_extension_descriptor
MPEG4_text_descriptor
MPEG4_video_descriptor
MPEGH_3D_audio_command_descriptor
MPEGH_3D_audio_config_descriptor
MPEGH_3D_audio_descriptor
MPEGH_3D_audio_drc_loudness_descriptor
MPEGH_3D_audio_multi_stream_descriptor
MPEGH_3D_audio_scene_descriptor
MPEGH_3D_audio_text_label_descriptor
multiplex_buffer_descriptor
multiplex_buffer_utilization_descriptor
MuxCode_descriptor
MVC_extension_descriptor
MVC_operation_point_descriptor

NPT_endpoint_descriptor

Version 3.39-3922

555
555
555
555
556
556
556
556
557
557
558
558
558
559
559
559
559
560
561
561
561
562
562
562
563
563
564
564
564
564
564
565
565
565
566
566
566
567
567
569
569
569
570
570
570
571

Version 3.39-3922

D.7.58. NPT_reference_descriptor

D.7.59.

private_data_indicator_descriptor

D.7.60. quality_extension_descriptor

D.7.61.
D.7.62.
D.7.63.

registration_descriptor
SL_descriptor

smoothing_buffer_descriptor

D.7.64. STD_descriptor

D.7.65. stereoscopic_program_info_descriptor

D.7.66.
D.7.67.

stereoscopic_video_info_descriptor

stream_event_descriptor

D.7.68. stream_mode_descriptor

D.7.69.

SVC_extension_descriptor

D.7.70. system_clock_descriptor

D.7.71.
D.7.72.
D.7.73.

target_background_grid_descriptor
transport_profile_descriptor

video_stream_descriptor

D.7.74. video_window_descriptor

D.7.75. virtual_segmentation_descriptor

D.7.76.
D.7.77.

VVC_timing_and_HRD_descriptor
VVC_video_descriptor

D.8. DVB-defined descriptors

D.8.1.
D.8.2.
D.8.3.
D.8.4.
D.8.5.
D.8.6.
D.8.7.
D.8.8.
D.8.9.

AAC_descriptor

AC3_descriptor

AC4_descriptor
adaptation_field_data_descriptor
ancillary_data_descriptor
announcement_support_descriptor
application_descriptor
application_icons_descriptor

application_name_descriptor

D.8.10. application_recording_descriptor

D.8.11.
D.8.12.
D.8.13.

application_signalling_descriptor
application_storage_descriptor

application_usage_descriptor

D.8.14. audio_preselection_descriptor

D.8.15. bouquet_name_descriptor

D.8.16.
D.8.17.

C2_bundle_delivery_system_descriptor

C2_delivery_system_descriptor

D.8.18. cable_delivery_system_descriptor

D.8.19.

CA_identifier_descriptor

D.8.20. cell_frequency_link_descriptor

D.8.21.
D.8.22.
D.8.23.

cell_list_descriptor
Cl_ancillary_data_descriptor

component_descriptor

D.8.24. content_descriptor

D.8.25. content_identifier_descriptor

TSDuck Userls Guide

571
571
571
571
572
572
572
572
572
572
573
573
573
573
574
574
574
574
574
575
575
575
575
576
576
576
576
577
577
577
577
578
578
578
578
579
579
579
579
580
580
580
581
581
581
581

11

TSDuck Useris Guide

12

D.8.26.
D.8.27.
D.8.28.
D.8.29.
D.8.30.
D.8.31.
D.8.32.
D.8.33.
D.8.34.
D.8.35.
D.8.36.
D.8.37.
D.8.38.
D.8.39.
D.8.40.
D.8.41.
D.8.42.
D.8.43.
D.8.44.
D.8.45.
D.8.46.
D.8.47.
D.8.48.
D.8.49.
D.8.50.
D.8.51.
D.8.52.
D.8.53.
D.8.54.
D.8.55.
D.8.56.
D.8.57.
D.8.58.
D.8.59.
D.8.60.
D.8.61.
D.8.62.
D.8.63.
D.8.64.
D.8.65.
D.8.66.
D.8.67.
D.8.68.
D.8.69.
D.8.70.
D.8.71.

country_availability_descriptor
cpcm_delivery_signalling_descriptor
CP_descriptor

CP_identifier_descriptor
data_broadcast_descriptor
data_broadcast_id_descriptor
default_authority_descriptor
Dll_location_descriptor

DSNG_descriptor

DTS_descriptor

DTS_HD_descriptor
DTS_neural_descriptor
DTS_UHD_descriptor
dvb_html_application_boundary_descriptor
dvb_html_application_descriptor
dvb_html_application_location_descriptor
dvb_j_application_descriptor
dvb_j_application_location_descriptor
ECM_repetition_rate_descriptor
enhanced_AC3_descriptor
extended_event_descriptor
external_application_authorization_descriptor
frequency_list_descriptor
FTA_content_management_descriptor
graphics_constraints_descriptor
image_icon_descriptor
IPMAC_generic_stream_location_descriptor
IPMAC_platform_name_descriptor
IPMAC_platform_provider_name_descriptor
IPMAC_stream_location_descriptor
ip_signalling_descriptor
ISP_access_mode_descriptor
linkage_descriptor
local_time_offset_descriptor
message_descriptor

mosaic_descriptor
multilingual_bouquet_name_descriptor
multilingual_component_descriptor
multilingual_network_name_descriptor
multilingual_service_name_descriptor
network_change_notify_descriptor
network_name_descriptor
NVOD_reference_descriptor
parental_rating_descriptor
partial_transport_stream_descriptor

PDC_descriptor

Version 3.39-3922

581
582
582
583
583
583
583
583
583
584
584
585
586
586
586
586
586
587
587
587
587
588
588
588
588
589
589
589
589
590
590
590
590
591
591
591
592
592
592
592
592
593
593
593
593
593

Version 3.39-3922

D.8.72.
D.8.73.
D.8.74.
D.8.75.
D.8.76.
D.8.77.
D.8.78.
D.8.79.
D.8.80.
D.8.81.
D.8.82.
D.8.83.
D.8.84.
D.8.85.
D.8.86.
D.8.87.
D.8.88.
D.8.89.
D.8.90.
D.8.91.
D.8.92.
D.8.93.
D.8.94.
D.8.95.
D.8.96.
D.8.97.
D.8.98.
D.8.99.

D.8.100.
D.8.101.
D.8.102.
D.8.103.
D.8.104.
D.8.105.
D.8.106.
D.8.107.
D.8.108.
D.8.109.
D.8.110.
D.8.111.
D.8.112.
D.8.113.
D.8.114.
D.8.115.
D.8.116.
D.8.117.

prefetch_descriptor
private_data_specifier_descriptor
protection_message_descriptor
RAR_over_DVB_stream_descriptor
RAR_over_IP_descriptor
related_content_descriptor
RNT_scan_descriptor
S2_satellite_delivery_system_descriptor
S2X_satellite_delivery_system_descriptor
S2Xv2_satellite_delivery_system_descriptor
satellite_delivery_system_descriptor
scheduling_descriptor
scrambling_descriptor
service_availability_descriptor
service_descriptor
service_identifier_descriptor
service_list_descriptor
service_move_descriptor
service_prominence_descriptor
service_relocated_descriptor
SH_delivery_system_descriptor
short_event_descriptor
short_smoothing_buffer_descriptor
simple_application_boundary_descriptor
simple_application_location_descriptor
SSU_enhanced_message_descriptor
SSU_event_name_descriptor
SSU_location_descriptor
SSU_message_descriptor
SSU_subgroup_association_descriptor
SSU_uri_descriptor
stream_identifier_descriptor
stuffing_descriptor
subtitling_descriptor
supplementary_audio_descriptor
T2_delivery_system_descriptor
T2MI_descriptor
target_IP_address_descriptor
target_IP_slash_descriptor
target_IP_source_slash_descriptor
target_IPv6_address_descriptor
target_IPv6_slash_descriptor
target_IPv6_source_slash_descriptor
target_ MAC_address_descriptor
target_ MAC_address_range_descriptor

target_region_descriptor

TSDuck Userls Guide

594
594
594
594
594
595
595
595
595
596
597
597
597
598
598
598
598
598
598
599
599
600
600
600
600
600
601
601
601
601
602
602
602
602
602
603
603
603
604
604
604
604
604
605
605
605

13

TSDuck Useris Guide

14

D.8.118. target_region_name_descriptor
D.8.119. target_serial_number_descriptor
D.8.120. target_smartcard_descriptor
D.8.121. telephone_descriptor
D.8.122. teletext_descriptor
D.8.123. terrestrial_delivery_system_descriptor
D.8.124. time_shifted_event_descriptor
D.8.125. time_shifted_service_descriptor
D.8.126. time_slice_fec_identifier_descriptor
D.8.127. transport_protocol_descriptor
D.8.128. transport_stream_descriptor
D.8.129. TTML_subtitling_descriptor
D.8.130. TVA_id_descriptor
D.8.131. update_descriptor
D.8.132. URI_linkage_descriptor
D.8.133. VBI_data_descriptor
D.8.134. VBI_teletext_descriptor
D.8.135. video_depth_range_descriptor
D.8.136. vvc_subpictures_descriptor
D.9. DTG/OFCOM-defined descriptors (DVB private descriptors)
D.9.1. dtg_guidance_descriptor
D.9.2. dtg_HD_simulcast_logical_channel_descriptor
D.9.3. dtg_logical_channel _descriptor
D.9.4. dtg_preferred_name_identifier_descriptor
D.9.5. dtg_preferred_name_list_descriptor
D.9.6. dtg_service_attribute_descriptor
D.9.7. dtg_short_service_name_descriptor
D.10. EACEM-defined descriptors (DVB private descriptors)
D.10.1. eacem_HD_simulcast_logical_channel_descriptor
D.10.2. eacem_logical_channel_number_descriptor
D.10.3. eacem_preferred_name_identifier_descriptor
D.10.4. eacem_preferred_name_list_descriptor
D.10.5. eacem_stream_identifier_descriptor
D.11. Eutelsat-defined descriptors (DVB private descriptors)
D.11.1. eutelsat_channel_number_descriptor
D.12. NorDig-defined descriptors (DVB private descriptors)
D.12.1. nordig_logical_channel_descriptor_v1
D.12.2. nordig_logical_channel_descriptor_v2
D.13. BSkyB-defined descriptors (DVB private descriptors)
D.13.1. sky_logical_channel_number_descriptor
D.14. Free TV Australia-defined descriptors (DVB private descriptors)
D.14.1. australia_logical_channel_descriptor
D.15. AVS-defined descriptors (DVB private descriptors)
D.15.1. AVS2_audio_descriptor
D.15.2. AVS3_audio_descriptor
D.15.3. AVS3_video_descriptor

Version 3.39-3922

605
606
606
606
606
606
607
607
607
607
608
608
609
609
609
609
610
610
610
611
611
611
611
611
611
612
612
612
612
612
613
613
613
613
613
613
613
614
614
614
614
614
615
615
615
616

Version 3.39-3922

D.16. AOM-defined descriptors (DVB private descriptors)

D.16.1. AV1_video_descriptor

D.17. UWA-defined descriptors (DVB private descriptors)

D.17.1.

CUVV_video_stream_descriptor

D.18. SCTE-defined descriptors

D.18.1.
D.18.2.
D.18.3.
D.18.4.
D.18.5.
D.18.6.
D.18.7.
D.18.8.
D.18.9.

cue_identifier_descriptor
EAS_audio_file_descriptor
EAS_inband_details_channel_descriptor
EAS_inband_exception_channels_descriptor
EAS_metadata_descriptor
splice_avail_descriptor
splice_DTMF_descriptor
splice_segmentation_descriptor

splice_time_descriptor

D.19. ATSC-defined descriptors
D.19.1. AC3_audio_stream_descriptor

D.19.2.
D.19.3.
D.19.4.
D.19.5.
D.19.6.
D.19.7.
D.19.8.
D.19.9.
D.19.10
D.19.11
D.19.12
D.19.13

caption_service_descriptor
component_name_descriptor
content_advisory_descriptor
dcc_arriving_request_descriptor
dcc_departing_request_descriptor
EAC3_audio_descriptor
extended_channel_name_descriptor
genre_descriptor

. redistribution_control_descriptor
. service_location_descriptor

. stuffing_descriptor

. time_shifted_service_descriptor

D.20. ISDB-defined descriptors

D.20.1.
D.20.2.
D.20.3.
D.20.4.
D.20.5.
D.20.6.
D.20.7.
D.20.8.
D.20.9.

D.20.10.
D.20.11.
D.20.12.
D.20.13.
D.20.14.
D.20.15.
D.20.16.
D.20.17.

area_broadcasting_information_descriptor
audio_component_descriptor
basic_local_event_descriptor
board_information_descriptor
broadcaster_name_descriptor
CA_contract_info_descriptor
CA_EMM_TS_descriptor
carousel_compatible_composite_descriptor
CA_service_descriptor
conditional_playback_descriptor
content_availability_descriptor
data_component_descriptor
data_content_descriptor
digital_copy_control_descriptor
download_content_descriptor
emergency_information_descriptor

event_group_descriptor

TSDuck Userls Guide

616
616
616
617
617
617
617
617
617
618
618
618
618
619
619
619
619
620
620
620
621
621
621
622
622
622
622
622
623
623
623
623
624
624
624
624
625
625
625
625
626
626
626
627
627
628

15

TSDuck Useris Guide

D.20.18.
D.20.19.
D.20.20.
D.20.21.
D.20.22.
D.20.23.
D.20.24.
D.20.25.
D.20.26.
D.20.27.
D.20.28.
D.20.29.
D.20.30.
D.20.31.
D.20.32.
D.20.33.
D.20.34.
D.20.35.
D.20.36.
D.20.37.
D.20.38.
D.20.39.
D.20.40.
D.20.41.
D.20.42.
D.20.43.

extended_broadcaster_descriptor
hierarchical_transmission_descriptor
ISDB_access_control_descriptor
ISDB_component_group_descriptor
ISDB_connected_transmission_descriptor
ISDB_hyperlink_descriptor
ISDB_LDT_linkage_descriptor
ISDB_network_identifier_descriptor
ISDB_target_region_descriptor
ISDB_terrestrial_delivery_system_descriptor
logo_transmission_descriptor
network_download_content_descriptor
node_relation_descriptor
partial_reception_descriptor
partialTS_time_descriptor
reference_descriptor
satellite_delivery_system_descriptor
series_descriptor
service_group_descriptor
short_node_information_descriptor
SI_parameter_descriptor
SI_prime_TS_descriptor
STC_reference_descriptor
system_management_descriptor
TS_information_descriptor

video_decode_control_descriptor

D.21. Generic format for unsupported tables and descriptors
D.21.1. Generic short table

D.21.2. Generic long table

D.21.3. Generic descriptor

Appendix E: Licenses
E.1. TSDuck license

E.2. Third-party libraries

Appendix F: References

16

F.1. Acronyms and abbreviations

Bibliography

Version 3.39-3922

628
629
629
629
629
630
631
631
631
632
632
632
633
633
633
634
634
634
634
635
635
635
635
636
636
636
637
637
637
637
639
639
639
640
640
645

Version 3.39-3922 TSDuck Userls Guide

Preface

TSDuck is a free and open-source MPEG Transport Stream Toolkit. It contains a set of simple but flexible
command-line utilities that run on Linux, Windows, macOS and BSD systems.

Through tsp, the "transport stream processor"”, many types of analysis and transformation can be applied on live
or recorded transport streams. This utility can be extended through "plugins”. Existing plugins can be enhanced,
and new plugins can be developed using a library of C++ classes.

This document is the useris guide for TSDuck. It explains the basic concepts of TSDuck and contains reference
sections for all commands and plugins.

Structure of this guide:
¥ The chapter 2 describes the data formats (transport stream, binary sections files, XML files).
¥ The chapter 3 describes all TSDuck commands.
¥ The chapter 4 describes all tsp plugins.
¥ The chapter 5 provides some concrete examples of TSDuck usage.

¥ The chapter 7 describes the level of test and support for some hardware devices, mainly DVB receivers and
Dektec, HiDes or VATek devices.

The world of Digital Television is built on top of a set of robust standards from various bodies. Understanding
these standards and how they interact is essential to use TSDuck. The relationships between these standards are
explained in section 2.4.

A bibliography of the main standard documents, as well as other useful links, is provided in the Bibliography at
the very end of this guide. Each time it is necessary to refer to a standard document, a link similar to this one is
present: [ISO-13818-1]. Just follow the link to have the complete description of the document in the bibliography.

Like any technical field, Digital Television uses a lot of acronyms. A like of them is provided in section F.1.
License

TSDuck is released under the terms of the license which is commonly referred to as "BSD 2-Clause License" or
"Simplified BSD License" or "FreeBSD License". This is a liberal license which allows TSDuck to be used in a large
number of environments. See the appendix E for more details.

Documentation format

The TSDuck useris guide is now formatted for HTML. The file tsduck.html is monolithic and self-sufficient, without
reference to external images. Therefore, this HTML file can be downloaded, saved, and copied, as long as the
license and content are not modified.

The TSDuck useris guide is now built using asciidoctor, from a set of text files which are maintained alongside the
source code, in the same git repository. Up to TSDuck version 3.37, the useris guide was a Microsoft Word
document. The document was distributed and available online as a PDF file only.

PDF files are primarily designed as page-oriented documents for printing. The TSDuck useris guide is now too
large to be printed and a PDF file is no longer necessary because the HTML version proposes the same navigation
features as the previous PDF file (expandable table of contents in a left-side panel).

A PDF version tsduck.pdf is still available. However, due to limitations in the PDF generator of asciidoctor, the
rendering is sometimes not as good as the HTML document.

Documentation set
The TSDuck documentation set is made of:

1. TSDuck Useris Guide (also from tsduck.io and in PDF format)

17

tsduck.html
https://asciidoctor.org
tsduck.pdf
tsduck.html
https://tsduck.io/download/docs/tsduck.html
https://tsduck.io/download/docs/tsduck.pdf

TSDuck Useris Guide Version 3.39-3922

2. TSDuck Developeris Guide (also from tsduck.io and in PDF format)

3. TSDuck Programming Reference

18

tsduck-dev.html
https://tsduck.io/download/docs/tsduck-dev.html
https://tsduck.io/download/docs/tsduck-dev.pdf
https://tsduck.io/doxy/

Version 3.39-3922 TSDuck Userls Guide

Chapter 1. Transport Stream Toolkit Overview

1.1. Operating system selection guidelines
TSDuck runs on Linux, Windows, macOS and BSD systems. Here is a brief summary of pros and cons of using
TSDuck on the various operating systems.

¥ Linux pros:

I Availability of a powerful shell environment. TSDuck is a lightweight toolkit with elementary tools and
plugins which can be combined in an infinite number of ways. The user can obtain even more flexibility
when combining them with the bash shell and all standard UNIX utilities (grep, sed, awk etc.) See some
complex examples in section 5.2.

¥ Linux cons:
I When used in a mobile environment, a laptop PC with Linux is required.

I Some DVB tuners are not supported on Linux. Some supported tuners do not work well on Linux. Make
sure to get fully supported DVB hardware.

¥ Windows pros:

I Available on all "average user" laptop PC. Useful for transport stream capture and analysis in the field.
¥ Windows cons:

I No or limited shell environment.

I Some limitations in the support of DVB receiver devices (see section 7.1.2.2, for more details). For
instance, it is impossible to retrieve the actual tuning parameters of a transport stream as detected by
the tuner device.

¥ macOS pros:

I Availability of a powerful shell environment, just another UNIX system, just like Linux. Powerful user-
friendly system.

¥ macOS cons:

I Currently no support for hardware DVB tuners and Dektec devices. So, macOS is recommended only
when dealing with transport stream files, IP networking or VATek-based modulators.

¥ BSD systems: For aficionados only.

Summary: Use Linux if you can. Use Windows when you do not have Linux (typically a Windows laptop in the
field). Use macOS if you have a Mac and do not need DVB or Dektec hardware.

1.2. Developing applications using the TSDuck library
TSDuck is mainly a large C++ library for Digital TV applications. All TSDuck commands and plugins are thin
wrappers on top of C++ classes from this library.

This library can be used by third-party applications, outside the TSDuck tools and plugins. To do that, you must
install the "TSDuck development environment".

Using the TSDuck library, you can develop independent Digital TV applications or TSDuck plugins. The provided
services include low-level features such as manipulating TS packets, intermediate features such as demuxing and
packetizing tables and high-level features such as running TS processing pipelines inside your application (which
means something like including tsp in your application).

See [TSDuck-Prog] for more details on the TSDuck library. This is a set of doxygen-generated pages with tutorials

19

TSDuck Useris Guide Version 3.39-3922

and reference documentation for all C++ classes in the library.

Some high-level features of the TSDuck library can also be used from Python or Java, typically running TS
processing pipelines or manipulating tables and sections inside Python or Java applications. The TSDuck Python
and Java bindings are also documented in [TSDuck-Prog].

The following figure illustrates the TSDuck software and how it can interact with third-party applications.

3rd-party applications TSDuck commands

Python I Java TS proc .

bindings _ bindings

TSDuck T5Duck plugins 3rd-party plugins

C++ libra packet input &

Digital TV ufilities C++ utilities 05 abstraction

A

Digital TV tuning framework Operating System

DirectShow
(Windows)

Figure 1. TSDuck software architecture

1.3. Installing TSDuck

The TSDuck installers are available from the "Download" section of the TSDuck Web site (see [TSDuck]). The basic
installation provides all TSDuck tools and plugins. The command-line tools are directly accessible from the
command prompt.

1.3.1. Windows

On Windows systems, TSDuck can be setup using a binary installer (traditional method) or using the winget
package manager (modern method). Winget is now the preferred package manager for open source and third-
party products on Windows systems. It is documented and supported by Microsoft. It should be pre-installed on
all recent Windows 10 and Windows 11 systems.

The TSDuck installation command is simply winget install tsduck

If you prefer the traditional method, binary executable installers are provided for 64-bit Windows platforms.
Simply run the executable to install TSDuck.

The directory containing the command-line tools is automatically added to the Path. The TSDuck development
environment is included in the installer but it is not installed by default. You must select it explicitly. The Java and
Python bindings are required to run Java or Python applications. They are also optional and must be selected
when needed.

20

Version 3.39-3922 TSDuck Userls Guide
Note that TSDuck is supported for Windows 10 and 11 only. TSDuck may work on older versions such as Windows
7 but without guarantee.

For users without privilege, a so-called "portable package" is provided. This is simply a zip archive file which can be
expanded anywhere. The TSDuck commands are located in the bin subdirectory and can be executed from here
without any additional setup. It is probably a good idea to add this bin directory in the Path environment variable
of the user.

Note: Starting with version 3.34, pre-built 32-bit installers for Windows are no longer provided. However, it is still
possible to build them yourself if needed. See the "building and installing TSDuck" section in [TSDuck-Prog].

1.3.2. Linux

Two flavors of pre-built packages are available: .rpm for Fedora or Red Hat systems and .deb for Ubuntu or Debian
systems. Currently, packages are available for Intel x64 platforms. Some packages are also available for Arm64.

All tools are in /usr/bin . There is a separate package for the TSDuck development environment.

On Linux distributions with other packaging systems, there is no pre-built binary package for TSDuck. It must be
compiled and installed using the makecommand. See the "building and installing TSDuck" section in [TSDuck-
Prog].

1.3.3. macOS

On macOS, TSDuck is installed using the Homebrew packaging and delivery system (see [HomeBrew]).
The TSDuck installation command is simply brew install tsduck

All tools are accessible from /usr/local/bin (Intel Mac) or /opt/homebrew/bin (Arm Apple Silicon Mac). This is the
standard installation structure for Homebrew.

The development environment is always installed with TSDuck using Homebrew.

1.3.4. BSD systems

There is no binary package for TSDuck on BSD systems. It must be compiled and installed using the make
command. See the "building and installing TSDuck" section in [TSDuck-Prog].

After installation, all tools are in /usr/local/bin for FreeBSD, OpenBSD and DragonFly BSD. They are in
lusr/pkg/bin for NetBSD. These are the standard locations for the installed packages on these systems.

21

TSDuck Useris Guide Version 3.39-3922

Chapter 2. Data Formats

2.1. Transport stream

Transport streams shall conform to the MPEG-2 system layer format as defined in ISO/IEC 13818-1 ([ISO-13818-1]).

2.1.1. Live transport streams

Live transport streams can be read by TSDuck from:
¥ Live sources using specialized hardware, cheap DVB tuners or Dektec devices.

¥ UDP/IP using various encapsulations (the encapsulation of TS packets in UDP packets does not matter since
TSDuck automatically retrieves the TS packets inside UDP packets and simply ignores everything in between).

¥ HTTP or HTTPS streams without encapsulation (ie. raw TS streams, but not manifest-based formats such as
DASH or HLS).

¥ HLS (HTTP Live Streaming) with transport stream segments (not fMP4).
¥ SRT and RIST transport protocols.

See the documentation of the plugins dvb, dektec, ip, http , hls, srt , rist for more details on the reception of live
transport streams.

The same plugins can also transmit live streams on Dektec devices, on UDP/IP streams (multicast or unicast), SRT
and RIST transport protocols.

HLS output is possible with the help of an independent HTTP server such as Apache. The his output plugin
produces the playlist and segment files. These files can then be served by any HTTP server.

Additionally, output plugins are provided for HiDes and VATek modulator devices. These devices do not have input
equivalent and the plugins are output only.

2.1.2. Stored transport streams

Transport streams can be read from and written to binary files, called "TS files".

A standard TS file must contain contiguous 188-byte TS packets without any encapsulation. All TS packets shall
start with the MPEG-defined synchronization byte 0x47. Any packet not starting with this synchronization byte is
considered invalid and rejected.

Unless specified otherwise, most TSDuck utilities and plugins can read or write several non-standard TS formats.
The supported formats are listed in the table below.

The command line option --format namecan be used to specify a precise file format.

On input, the file format is automatically detected for each file. But the auto-detection may fail in some cases (for
instance when the first timestamp of an M2TS file starts with 0x47 in which case the file would be incorrectly
identified as TS). Using the option --format forces a specific format to avoid ambiguities.

On output, the default format is a standard TS file.
The table below lists all possible format names as used with the option --format .

Table 1. Transport stream file formats

22

Version 3.39-3922 TSDuck Userls Guide

Name Description

autodetect Auto-detection of the file format. This is the default for input files and is usually appropriate.
This will always work with TS files but may fail in rare cases with M2TS files. This value is not
applicable to output files.

TS Standard transport stream file containing contiguous 188-byte TS packets without any
encapsulation. This is the default for output files.

RS204 Raw transport stream capture with Reed-Solomon outer FEC. Each standard 188-byte TS packet
is followed by a 16-byte Reed-Solomon FEC. On input, these 16 bytes are ignored. On output,
they are set to zero (placeholder for real FEC).

M2TS Blu-ray compatible format. Also found in recording files from some DVR devices. This is the
same as TS format, except that each 188-byte TS packet is preceded by a 4-byte time stamp. The
2 most significant bits are copy control indicators and are ignored. The 30 least significant bits
represent a time stamp in 27 MHz unit (same unit as PCR values). Note that those time stamps
wrap up every 39 seconds approximately since they use only 30 bits while full PCR values use 42
bits.

duck This is a TSDuck proprietary format. It is similar to M2TS except that the header before each TS
packet uses 14 bytes and contains all packet metada. Since this is a TSDuck proprietary format,
it can be used only in pipes between instances of tsp. The only advantage of this format is to
transport complete original time stamps, packet labels and other metadata between instances
of tsp.

When dealing with non-conformant TS files coming from outside, the utility tsresync can be used to extract the TS
packets and recreate a pure 188-byte TS file which can be manipulated by the various utilities and plugins from
the TSDuck suite.

2.2. Bit rates

2.2.1. Interpretation

In the manipulation of transport streams, using "bitrates” is quite common. Unless specified otherwise, all bitrate
values are in bits per second, based on 188-byte TS packets.

2.2.2. Representation

Although it is quite common to manipulate bitrates as integral values, there are some cases where the fractional
value may have some importance. In broadcast systems, for instance, the bitrate of a transport stream is directly
computed from the modulation method and its parameters. And the result is rarely an integral value.

When manipulating multi-megabits-per-second transport streams, a fraction of bit per second is usually
negligible, but not always. When a TSDuck tool runs for hours or days, these small fractions can make a
difference.

There were several user requests to use more precise representations of bitrates instead of integers. However,
requirements from different users are sometimes conflicting. Representing smaller fractions may lead to less
accuracy or overflows in intermediate computations. There is no perfect representation for all needs.

As a consequence, TSDuck can be compiled with four different representations of bitrates. The default one
provides the best balance so far between precision and performance. For specific needs, TSDuck may be rebuilt
with a customized representation.

The four possible representations are listed below:

23

TSDuck Useris Guide Version 3.39-3922

¥ 64-bit fixed-point value with 1 decimal digit: The underlying representation is a 64-bit integer type. The
performances are correct. The accurancy is better than with integers but with one decimal only. Using more
than one decimal is possible but may lead to intermediate overflows.

¥ 64-bit integer values: This provides the best performance but no accuracy below one bit per second.

¥ Fractions of two 64-bit integer values: The accuracy of bitrates is formally preserved, especially when
computed from modulation parameters. But intermediate overflows are so frequent that this representation
is hardly usable beyond basic usages. The performances are also worse than with any other representation.

¥ 64-bit floating-point values: This is the default. The precision is preserved, there is almost no intermediate
overflow. But the accuracy of computations is not always preserved.

To verify the bitrate representation of a given build of TSDuck, use the option --version= bitrate with any TSDuck
command (see section 3.1.3).

2.2.3. Specifying bitrate in command lines
Many TSDuck tools or plugins get bitrates values from command line options. With all representations of bitrates,
it is possible to specify integer values (see section 3.1.2 about specifying integer values in command lines).

Depending on the representation, it is also possible to specify more precise values. Using fixed-point or floating-
point values, it is possible to use a decimal point. With fixed-point values, do not provide more decimal digits than
the precision. With fractions, it is possible to provide fractional values, for instance 12345/67.

2.2.4. Rebuilding with a different bitrate representation
When compiling TSDuck, the default bitrate representation is a floating-point value. This is also the representation
in pre-built binaries.

Rebuilding TSDuck with another representation is possible but must be consistent. All tools and shared libraries
must have been built with the same representation. Special symbols and linker dependencies are generated to
prevent mixing binaries and libraries with different representations.

To select a different representation of bitrates, simply define the corresponding C++ macro in the build system.
See the source file src/libtsduck/base/types/tsBitRate.h for the various macros.

On Linux and macOS, the makecommand accepts direct parameters, one of the following:
make-j10 BITRATE_FLOAT
make-j10 BITRATE_FRACTHON

make-j10 BITRATE_INTEGHER
make-j10 BITRATE_FIXED BITRATE_DECIMARS

The last command rebuilds with fixed-point and three decimal digits instead of one.

2.3. PSI/SI signalization

TSDuck can manipulate PSI/SI sections and tables outside of transport streams. Sections and tables can be
extracted from a transport stream, saved and manipulated in various file formats and injected in other transport
streams.

There are two main file formats for PSI/SI: binary section files and XML text files.

These two formats are documented in the next sections. In the general case, tools which extract PSI/SI sections
and tables can save in any format and tools which use PSI/SI can read them from any format as well. The utility
tstabcomp, the table compiler, can translate between the two formats.

24

Version 3.39-3922 TSDuck Userls Guide

Some key differences between the two formats are:

¥ Binary section files contain collections of individual sections in any order, not necessarily complete tables.
XML files contain complete tables only.

¥ Binary section files contain the exact representation, byte by byte, of sections which were extracted from a
transport stream. XML files contain a higher-level representation.

¥ Binary section files are not easily modifiable. XML files contain text which can be manually edited using any
text editor or XML tool.

There is a third possible format: JSON. This format is formally equivalent to XML. In practice, TSDuck uses XML as
internal representation and performs an automated conversion between XML and JSON when necessary. See
section 2.7.3 for more details on this conversion process. In this document, the only documented format for
tables and descriptors is XML. Use the transformation rules in section 2.7.3 to determine the JSON equivalent.

2.3.1. PSI/SI binary format

A PSI/SI binary file contains one or more sections in a simple binary format. Each section is directly written in the
file without any encapsulation or synchronization information. All sections are contiguous in the file.

A binary file must be read from the beginning. The header of each section contains the section length. Using this
length information, it is possible to locate the next section, starting right after the current section, and so on down
to the end of the file.

2.3.1.1. Creating PSI/SI binary files

PSI/SI binary files can be extracted from live streams or TS files using the command tstables or the plugin tables .
The extracted sections are identical, byte by byte, to the transported sections. By default, all sections of a given
table are contiguously saved in the binary file, in increasing order of section number. Thus, a complete table can
be easily rebuilt by reading sections one by one.

With the option --all-sections , tstables and the plugin tables save all individual sections in their order of
reception. In that case, the order and repetition of sections in the binary files are not defined.

PSI/SI binary files can also be created by tstabcomp, the table compiler. Tables are described in XML format (see
section 2.3.2) and compiled into a binary file. Since tstabcomp processes complete tables, all sections of a table are
also contiguously saved in the binary file, in increasing order of section number, just like tstables by default.

2.3.1.2. Using PSI/SI binary files

The content of binary section files can be viewed using tstabdump This utility displays the content of each
individual section in a human-readable format, regardless of the order of sections in the file.

Binary section files can be used to packetize or inject sections in a stream (command tspacketize and plugin
inject). The sections are packetized or injected in their order of appearance in the file.

Finally, binary section files can also be decompiled by tstabcomp to recreate the corresponding XML files from the
binary tables. But note that XML files contain complete tables only. This means that tables can be recreated only
when their sections are contiguous and in increasing order of section number in the binary file.

2.3.2. PSI/SI XML format

An XML file containing PSI/SI tables for TSDuck uses <tsduck> as root node. The root node contains any number of
tables.

Unlike binary files which may contain individual sections, XML files can only contain complete tables. The XML
format represents a higher-level view of a table, regardless of the binary implementation in one or more sections.

25

TSDuck Useris Guide Version 3.39-3922

The following sample XML file contains the definition for simple (and incomplete) PAT and PMT.

<?xml version="1.0" encoding="UTF-8"?>

<tsduck>

E <PATversion="8" transport_stream_id= "0x0012" network_PID=0x0010">
E <service service_id= "0x0001" program_map_PIDBx1234"/>
E <service service id= "0x0002" program_map_PID8x0678"/>
E </PAT>

E <PMTversion="4" service_id= "0x0456" PCR_PID&x1234">

E <CA descriptor CA_system_id*0x0777" CA_PID*®9x0251"/>
E <componentelementary PID=0x0567" stream_type="0x12">
E <CA_descriptor CA_system_id=0x4444" CA_PID9x0252"/>
E <ISO_639_language_descriptor>

E <language codeZfre" audio_type="0x45"/>

E <language code=deu" audio_type="0x78"/>

E </ISO_639_language_descriptor>

E </component>

E </PMT>

</tsduck>

All XML files shall be encoded in UTF-8 format to allow international character sets in service names or event
descriptions for instance. The initial declaration line <?xml version="1.0" encoding="UTF-8"?> is optional but
recommended. The complete definition of the XML model can be found in appendix D.

2.4. Compatibility and conflicts between standards

2.4.1. Supported standards

The imbrication of digital TV standards is complex and sometimes problematic for the user who wants to analyze
the structure of a transport stream. TSDuck tries to help, either using command line utilities and plugins, and C++
classes for applications which are built on top of the TSDuck library.

The first layer of standard is MPEG [ISO-13818-1]. It is the common root of all regional or international standards
in digital TV. The MPEG standard defines the transport stream format, PES, sections and descriptors, the PSI
(Program-Specific Information such as PAT, CAT, PMT) and several descriptors. The allocated ranges of tables ids
and descriptor tags for MPEG is reserved and never conflicts with other standards.

The DVB-defined table-specific descriptors are exceptions. These descriptors reuse MPEG-
defined descriptor tags but are used only in very specific DVB-defined sections where the
MPEG-defined descriptors with the same tags are normally not used.

At the second layer, then come the regional standards: DVB (Europe), ATSC (USA), ISDB (Japan). Note that these
standards are also used in other parts of the world, in addition to their original regions.

The third layer is made of ANSI/SCTE standards. They are application-level standards such as emergency alerts
[SCTE-18], splice signalization for advertisement [SCTE-35] or encryption [SCTE-52]. These standards were
originally designed to complement ATSC in the USA but they are sometimes used in conjunction with DVB
(especially [SCTE-35]). Parts of the [SCTE-52] standard were also reused in ATIS-defined standards for IP-TV
encryption.

DVB and ATSC are independent and mutually exclusive standards. They are never used together in the same
transport stream. Most of their table ids and descriptor tags use distinct ranges. It is consequently easy to "guess"
the second layer of standard of a transport stream, when one of their specific sections or descriptors is used.

26

Version 3.39-3922 TSDuck Userls Guide

DVB adds a non-ambiguous concept of private descriptors where properly registered entities, operators or
industries may define their own privately defined descriptors.

ISDB is the troublemaker which makes things complicated and often requires manual setup using TSDuck
command line options or default configuration.

¥ ISDB was originally defined in Japan by ARIB in two flavors, ISDB-T and ISDB-S.

¥ ISDB was later adopted by other countries, starting with Brazil, for terrestrial TV. At this time, the standards
were redefined by ABNT (Brazil) under the name ISDB-Tb, to amend features which were too Japanese-
specific, creating two branches of ISDB. The two branches diverged until a "harmonization committee" was
created to limit the conflicts between the two.

H

ISDB reuses some parts of DVB but not all. Each iteration of the standard incorporates more DVB descriptors,
making it hard to define a stable common subset between DVB and ISDB.

+H

While ISDB reuses sections and descriptors ids and syntax, it sometimes redefines the semantics of some
fields such as character sets or time reference.

<

The semantics of some DVB-defined fields even varies between the variants of ISDB. As an example, time
values are defined as UTC in DVB. In Japan, ARIB-defined ISDB redefines the same fields as JST (Japan
Standard Time). In South America, ABNT-defined ISDB-Tb redefines it as UTC-3. In African countries, the field
is loosely defined as local time, without more details.

H

ISDB even redefines tiny details of the syntax of some DVB descriptors it reuses. This is the case for the
satellite_delivery_system_descriptor for instance.

Therefore, an ISDB stream is sometimes hard to characterize. A transport stream first appears as MPEG-defined
when we get the PAT and PMTIs. Then, it looks like DVB when tables such as SDT or TDT are encountered. But later
it can appear as ISDB when ISDB-specific tables such as a BIT or CDT are found. The problem is that, as this time,
all information such as dates and time in TDT which were previously interpreted in the DVB semantics shall be
retroactively reinterpreted in the ISDB semantics (or the multiple possible ISDB semantics in the case of date and
time).

TSDuck tries to dynamically guess the type of standard based on the sections and descriptors it progressively
discovers in the stream. The list of standards is consequently evolving along the packet processing. It usually
starts with "MPEG" and may later evolve to "MPEG, DVB" or "MPEG, ATSC" or "MPEG, DVB, SCTE" or "MPEG, DVB,
ISDB".

Because of this progressive discovery of the standards, it is possible that data structures are incorrectly
interpreted in the initial phase, before a new standard becomes clear. This is especially critical in the case of ISDB
where a transport stream is often initially interpreted as a DVB one.

TSDuck defines a few command-line options which can be used to specify the right standards from the beginning

(see section 2.4.2). Some default options are also available in the userls TSDuck configuration file (see appendix A).

Also note that the appendix D lists the XML format of all tables and descriptors, structured by original standards.

2.4.2. TSDuck options for default standard selection

By default, TSDuck tries to guess the standards which are used in a transport stream. The following options can
be used to indicate from the beginning how tables and descriptors should be interpreted. They are briefly
repeated in the documentation of all commands to which they apply.

--abnt

Assume that the transport stream is an ISDB one with ABNT-defined variants.

ISDB streams are normally automatically detected from their signalization but there is no way to determine if this
is an original ARIB-defined ISDB or an ABNT-defined variant.

--atsc

27

TSDuck Useris Guide Version 3.39-3922

Assume that the transport stream is an ATSC one.

ATSC streams are normally automatically detected from their signalization. This option is only useful when ATSC-
related stuff is found in the TS before the first ATSC-specific table. For instance, when a PMT with ATSC-specific

descriptors is found before the first ATSC MGT or VCT.

--brazil

A synonym for --isdb --abnt --time-reference UTC-3

This is a handy shortcut when working on South American ISDB-Tb transport streams.

--default-pds

Specify a default DVB-defined Private Data Specifier (PDS). The specified value is used as private data specifier to

value

interpret private descriptors in the absence of preceding private_data_specifier_descriptor

This option is meaningful only when the signalization is incorrect, when DVB private descriptors appear in tables

without a preceding private_data_specifier_descriptor

This type of invalid signalization is sometimes seen in operator-controlled networks, when operators specify their

receivers and do not always care about the standards.

The specified PDS value must be either a 32-bit integer or one of the predefined identifiers from the table below.

These identifiers are not case-sensitive.

Table 2. Values for option --default-pds

Name Value Description

AOM 0x414FAD53 Alliance for Open Media

Australia 0x00003200 Free TV Australia

AVSA 0x41565341 AVS Audio Working Group of China

AVSV 0x41565356 AVS Video Working Group of China

BskyB 0x00000002 BskyB British TV operator

CanalPlus 0x000000C0O Canal+ French TV operator

Ccuw 0x63757676 UHD World Association (UWA)

EACEM 0x00000028 European Association of Consumer Electronics Manufacturers, now renamed
as DigitalEurope

EICTA 0x00000028 European Information, Communications and Consumer Electronics
Technology Industry Associations. Merged with EACEM.

Eutelsat 0x0000055F Eutelsat European satellite provider

Logiways 0x000000A2 Former CAS vendor

Nagra 0x00000009 Kudelski, Nagravision, CAS vendor

NorDig 0x00000029 NorDig standard committee (Northern Europe and Ireland)

OFCOM 0x0000233A British regulator, formerly ITC

TPS 0x00000010 Former French TV operator

--ignore-leap-seconds

Do not explicitly include leap seconds in some precise UTC computations where leap seconds are specified as
important.

According to Wikipedia, "a leap second is a one-second adjustment that is occasionally applied to Coordinated
Universal Time (UTC), to accommodate the difference between precise time (as measured by atomic clocks) and

28

Version 3.39-3922 TSDuck Userls Guide
imprecise observed solar time (known as UT1 and which varies due to irregularities and long-term slowdown in the
EarthOs rotation).”

Most computer systems (Linux, macOS, Windows) donit include leap seconds in their evaluation of UTC time,
making their reported UTC times formally incorrect.

Some parts of Digital TV standards specify that leap seconds should be included in some specific computations. By
default, TSDuck explicitly adds the leap seconds to the UTC time, as reported by the operating system, when
necessary.

This option can be useful to disable the addition of leap seconds in the presence of some non-conformant
external equipment which ignore leap seconds.

Currently, this option applies to SCTE 35 splice_schedule() commands only.

This option can also be set from the TSDuck useris configuration file using option leap.seconds (see section A.2).
--isdb

Assume that the transport stream is an ISDB one.

ISDB streams are normally automatically detected from their signalization. This option is only useful when ISDB-
related stuff is found in the TS before the first ISDB-specific table.

--japan
A synonym for --isdb --time-reference JST
This is a handy shortcut when working on Japanese transport streams.

Beyond ISDB standard, in most applications this option also uses ARIB STD-B24 character sets, uses Japan as
default region name for UHF/VHF bands and activates some specificities for Japan such as different semantics for
component types.

--philippines

A synonym for --isdb --abnt --time-reference UTC+8. This is a handy shortcut when working on Philippines
transport streams.

--time-reference name
Use a non-standard (non-UTC) time reference in DVB-defined TDT/TOT.

This is typically used in ARIB-defined ISDB and ABNT-defined ISDB-Tb standards. These standards reuse DVB-
defined S| but change the semantics of the date and time fields, using another time reference.

The specified name can be either UTC (the DVB-defined default), JST (Japan Standard Time) or UTC+|-hh[:mm]

Examples: UTC+Ysame as JST, for ARIB-defined ISDB), UTC-3(for ABNT-defined ISDB-Tb in Brazil and South
America) or UTC+2:3((if such reference should be used).

--usa
A synonym for --atsc --hf-band-region usa.

This is a handy shortcut when working on North American transport streams.

2.5. Character sets

2.5.1. Standards and character sets

Each standard defines its own way of representing characters in tables and descriptors.

29

TSDuck Useris Guide Version 3.39-3922

DVB:

ISDB (ARIB):

ISDB (ABNT):

ATSC:

XML:

Each string is encoded using one single character set. The default character set is a modified
version of ISO-6937. For strings which cannot be encoded using 1ISO-6937, another character set
can be selected using a specific leading binary sequence. Since DVB character sets include UTF-8
and UTF-16, all Unicode characters can be eventually represented. See [ETSI-300-468], annex A.

Each string is encoded using ARIB STD-B24 (see [ARIB-B24] part 2, chapter 7). A string may
alternate between several character sets, typically Kanji, Hiragana, Katakana and alpha-
numerical characters. The switching between character sets is performed using control binary
sequences. While all Japanese characters can be encoded, many European accented character
cannot be represented. There is no way to encode arbitrary Unicode character in ARIB STD-B24.

There is no standard ABNT-defined representation of strings. Each country which adopted the
ABNT-defined variant of ISDB uses its own representation. For instance, Brazil and other South
American countries use 1SO-8859-15 while the Philippines use UTF-8. To make things worse,
although these character sets are included in the DVB standard, these countries do not use the
DVB-defined leading binary sequences which indicate the character set and do not allow
switching to other character sets.

Simple strings are encoded in 7-bit ASCII. But most strings are encoded using "multiple string
structures" where all Unicode characters can be represented.

TSDuck-defined XML files use some predefined non-ambiguous character set as indicated in the
first directive. This is usually UTF-8. All XML strings are encoded in the same character set. It is
the responsibility of TSDuck to convert them in the appropriate character set when serializing
tables and descriptors.

With ATSC multiple string structures, there is no ambiguity. They are part of the ATSC tables and descriptors
definition and are always encoded using the same standard.

With DVB and ISDB, there are several types of ambiguities:

¥ The ISDB signalization reuses some DVB-defined tables and descriptors, but texts are represented with a non-
DVB character encoding. When analyzing or creating such structures, the context (DVB vs. ISDB) must be
known to select the appropriate encoding method.

¥ Invalid DVB encoding: According to [ETSI-300-468], the default DVB character set (without explicit character

table code)

is ISO-6937. However, some bogus signalization may assume that the default character set is

different, typically the usual local character table for the region of the operator. The non-standard default
character table must be specified using an option.

2.5.2. TSDuck options for character sets

TSDuck commands and plugins which manipulate tables and descriptors have specialized options to indicate the
character set to use.

By default, the standard DVB text encoding is used in DVB and ISDB structures.

The following options can be used to alter the behavior of TSDuck. They are briefly repeated in the documentation
of all commands to which they apply.

--brazil

A synonym for --default-charset RAW-ISO-8859-15 .

All strings are interpreted and generated as 1SO-8859-15 without explicit leading table code.

This is a handy shortcut when working on South American ISDB-Tb transport streams.

--default-charset

name

When reading binary sections, this option specifies the default character set to use when interpreting strings from

30

Version 3.39-3922 TSDuck Userls Guide

tables and descriptors, when there is no initial DVB sequence for character table selection. This overrides the DVB
defaults and should be used with invalid streams which omit the initial DVB sequence for character table selection
when using a non- default character set.

By default, standard DVB encoding is used.

When generating binary sections (from XML or JSON files for instance), this option specifies the preferred
character encoding. The DVB rules are applied : when a non-default DVB character set is selected, the appropriate
initial DVB sequence for character table selection is inserted.

By default, TSDuck tries several character sets until one is capable of encoding the string. The order of selection is
ISO 6937 (DVB default character set), ISO 8859-15 (convenient with most European languages) and UTF-8. Since
UTF-8 can encode everything, the string will always be successfully encoded.

See section 2.5.3 below for a list of available character set names.
--europe
A synonym for --default-charset ISO-8859-15

Using this option, all DVB strings without explicit leading table code are assumed to use 1SO-8859-15 instead of
the standard ISO-6937 encoding.

This is a handy shortcut for commonly incorrect DVB signalization on some European satellites. In that
signalization, the default character encoding (without leading table code) is 1SO-8859-15, the most common
encoding for Latin & Western Europe languages. When an explicit leading table code is present, then the
corresponding character set is used.

--japan
A synonym for --default-charset ARIB-STD-B24 .
This is a handy shortcut when working on Japanese transport streams.

Beyond character sets, in most applications, this option also declares ISDB as default standard, use Japan as
default region name for UHF/VHF bands and activates some specificities for Japan such as the use of JST time
instead of UTC or different semantics for component types.

--philippines
A synonym for --default-charset RAW-UTF-8 .
All strings are interpreted and generated as UTF-8 without explicit leading table code.

This is a handy shortcut when working on Philippines transport streams.

2.5.3. Character set names

The available table names for option --default-charset are:

¥ DVB character sets. The name specifies a standard DVB encoding with a different default character set.
Without leading table code, the specified character set is used. But if a leading table code is present, the
appropriate character set for that table code is used.

I 1ISO-6937

I DVEsynonym for ISO-6937%

ISO-8859-1

ISO-8859-2

ISO-8859-3

ISO-8859-4

ISO-8859-5

31

TSDuck Useris Guide Version 3.39-3922

ISO-8859-6

ISO-8859-7

ISO-8859-8

ISO-8859-9

ISO-8859-10

ISO-8859-11

ISO-8859-13

ISO-8859-14

ISO-8859-15
I UTF-8
I UNICOD(n fact UTF-16
¥ ARIB character sets (Japan):
I ARIB-STD-B24
I ARIB(synonym for ARIB-STD-B24

¥ Raw character sets. They use the same encoding as their DVB-defined counterpart but without any leading
table code. No leading code is interpreted, the specified case is unconditionally used. Using these character
sets shall be reserved to specific situations.

I RAW-ISO-6937

I RAW-ISO-8859-1
I RAW-ISO-8859-2
I RAW-ISO-8859-3
I RAW-ISO-8859-4
I RAW-ISO-8859-5

I RAW-ISO-8859-6

RAW-1SO-8859-7

I RAW-ISO-8859-8

RAW-1SO-8859-9

RAW-1S0O-8859-10

I RAW-ISO-8859-11

RAW-ISO-8859-13

I RAW-1S0O-8859-14

I RAW-1S0-8859-15

I RAW-UTF-8

I RAW-UNICOfirEfact UTF-16
¥ Debug character set.

I DUMP

The DUMEharacter set can be used for debugging. This is not a real character set in the sense that it does not
return a Unicode string from a binary representation.

32

Version 3.39-3922 TSDuck Userls Guide

With this character set, decoding binary data returns a string containing a hexadecimal dump of the binary data. It
is typically used with tstables or tstabdumpto display the exact binary content of strings in tables and descriptors.

Similarly, encoding a string means translating the hexadecimal characters which are contained in that string into
binary data. The input string shall contain only hexadecimal digits and spaces. This character set is typically used
in XML files to force specific binary contents in text areas of tables and descriptors.

2.6. XML files

2.6.1. Usage of XML files in TSDuck

XML files are used as configuration and data files. They are used as input and output by TSDuck.

All TSDuck XML files use <tsduck> as root node. They shall be encoded in UTF-8 format. The initial declaration line
<?xml version="1.0" encoding="UTF-8"?> is optional but recommended.

For TSDuck users, XML files are mostly used to represent PSI/SI tables. This format can be used anywhere tables
are used, either on input or output. See section 2.3.2 and appendix D.

XML files are also used as channel files containing lists of TV channels and the tuning characteristics of their
respective transport streams. Channel files can be created and updated using the command tsscan. They can be
used with the dvb input plugin as "tune to the transport stream of channel ABC, wherever it is". The format of
channel files is documented in appendix B.

Finally, XML files are used as configuration files (read-only). They describe the characteristics of UHF and VHF
frequency bands by region (tsduck.hfbands.xml , see appendix A, section A.4), the technical specifications of
various models of LNBIs for satellite dishes (tsduck.Inbs.xml , see appendix A, section A.3) or resource monitoring
configurations (tsduck.monitor.xml , see appendix C). These configuration files are augmented when new
information is available. Do not hesitate to request enhancement of these files through the TSDuck issue tracker
(see [TSDuck-Issues])).

2.6.2. Inline XML content

In most TSDuck commands, if the name of an input XML file starts with <?xm| it is considered as inline XML
content, meaning that the string in the command line is directly the XML content and not a file name.

A similar mechanism exists for output XML files. When an application such as tsp runs for a long time, possibly
forever, other applications may want to grab XML output files are soon as they are created. In that case, it is
possible to output the whole content of an output XML file as one single line through the message logger (the
standard error device by default). If another application filters the tsp standard error, it will get each XML file as
one single text line. To facilitate the filtering of actual XML lines, it is possible to specify a marker prefix in the line,
typically some easily recognizable pattern. See the description of the option --log-xml-line in the command
tstables and the plugin tables .

The output of XML files as one single line is also extremely useful for third party applications which use TSDuck as
a library. The C++, Java or Python class named TSProcessoris the equivalent of tsp inside an application. The log
messages which are produced by this class can be processed by user-defined classes. These user-defined classes
can then filter and process XML outputs as soon as they are produced. Java and Python examples of this features
are provided with the TSDuck source code.

2.6.3. XML model files

For each type of XML file, TSDuck uses a model file which describes the expected XML structure of the
corresponding data or configuration file. XML model files use the extension .model.xml.

This XML model mechanism can be considered as a minimalist equivalent of XML-Schema, with less features but

33

TSDuck Useris Guide Version 3.39-3922

much more lightweight.

In a model file, all allowed nodes and attributes are present as template. The contents of attributes in this
template are comments describing the expected content of the corresponding attribute in real XML files. The
values of these attributes in the template are descriptive only; they would be invalid if directly used in input XML
files for TSDuck.

Notes on types and formats:
¥ Tags and attributes are not case-sensitive.
¥ Integer values can be represented in decimal or hexadecimal (Ox prefix).
¥ Booleans are true or false .

¥ When an attribute or text node is described as hexadecimal content, it must contain an even number of
hexadecimal digits. All forms of spaces, including line breaks, are ignored.

¥ Attributes values for date, time and date/time are represented as "YYYY-MM-DD", "hh:mm:ss" and "YYYY-MM-
DD hh:mm:ss" respectively. On output, these attributes values are exactly formatted as indicated. In input, to
accommodate various conventions, all non-digit characters are considered as valid separators. Therefore, an
1ISO 8601 date such as "2020-12-01T15:10:217" is accepted and interpreted as "2020-12-01 15:10:21".

¥ Some attributes accept symbols in addition to plain numerical values. The names of accepted symbols are
listed in the attribute. Example: type="ATSC|DVB-C|DVB-S|DVB-T|ISDB-T"

The command tsxml can be used to test to conformance of XML files to a specific model.

All XML configuration and model files are located in the global TSDuck configuration directory:
¥ Linux : /usr/share/tsduck
¥ macOS : /usr/local/share/tsduck (Intel) or /opt/homebrew/share/tsduck (Arm)
¥ Windows : %TSDUCK%\bin

¥ BSD : /usr/local/share/tsduck or /usr/pkg/share/tsduck (NetBSD)

2.6.4. XML patch files

An XML patch file is a template for transformations to apply on XML files. It is typically used to apply on-the-fly
transformations on various PSI/SI tables by plugins such as pat, pmt bat, cat, sdt, nit when the requested
transformations cannot be handled by other options.

This XML patching mechanism can be considered as a minimalist equivalent of XSLT, with less features but much
more lightweight.

The command tsxml can be used to test XML patch files on any arbitrary XML file. This is the recommended way to
test a patch file on existing XML tables before using it on real transport streams.

2.6.4.1. Structure matching

A patch file is also an XML file. Its structure mimics the structure of XML input files. This is a template which is
compared with the input file.

More precisely, each XML element in the patch file (including its parent hierarchy) is compared with equivalent
structures in the input file. To have a match, the node name and all parent node names must be identical and all
attributes which are specified in the node in the patch file must be present and have the same value in the input
file.

It is also possible to match a node according to an attribute having a value different from the specified one (see
below).

34

Version 3.39-3922 TSDuck Userls Guide

Advanced structure matching is also possible using conditions, more details on this are
provided later.

Consider the following input XML file:

<tsduck>

E <PATtransport_stream_id= "1" >

E <service service_id= "10" program_map_PID300"/> <!I--[1] -->
E </PAT>

E <PATtransport_stream_id= "2" >

E <service service id= "10" program_map_PID400"/> <!--[2] -->
E <service service_id= "20" program_map_PID500"/> <I-- [3] -->
E </PAT>
</tsduck>

Using the following patch file, the <service> entry matches [1], [2] and [3].

<tsduck>
E <PAT>
E <service>
E </PAT>
</tsduck>

With the following patch file, the <service> entry matches [1] and [2] because of the service_id attribute:

<tsduck>
E <PAT>
E <service service_id= "10"/>
E </PAT>
</tsduck>

The next patch file matches only [2] because of the combination of a <PAT>with transport_stream_id 2 and
<service> with service_id 10.

<tsduck>

E <PATtransport_stream_id= "2" >
E <service service_id= "10"/>
E </PAT>

</tsduck>

The next example illustrates how to match an attribute having any value except the specified one. In a patch file,
when an attribute value starts with a !, the structure matches any node where the specified attribute has a
different value (or the attribute is not present).

Thus, the following patch file matches [1] and [3].

<tsduck>

E <PATtransport_stream_id= "1" >

E <service program_map_PIDH00" />
E </PAT>

</tsduck>

It could have been tempting to use the operator !=, the syntax program_map_PID!="400instead

35

TSDuck Useris Guide Version 3.39-3922

of ="1400" . However, !1="400" is not a valid XML syntax.

2.6.4.2. Special attributes

In the XML structure, special attributes have a hame starting with "x-" . They have a special interpretation; they are
not used for attribute matching.

The following table summarizes the special attributes. They are described in details in the subsequent sections.

Table 3. Special attributes in XML patch files

Attribute Usage

x-add-NAME="value" Add the attribute NAM@ith the specified value in the matching element.

x-condition="EXPRESSION" | The EXPRESSI@\evaluated based on symbols. If the expression is true, the
enclosing element is selected for patching.

x-define="NAME" If the enclosing element is selected, the symbol NAMIs defined in the global
repository.

x-delete-NAME="" Delete the attribute NAMih the matching element.

x-node="add" The node with this attribute is added in the matching parent node.

x-node="delete" The matching node is completely removed.

x-node="delete(NAME)" The next parent with name NAM&bove the matching node is completely removed.

x-undefine="NAME" If the enclosing element is selected, the symbol NAME undefined from the global
repository.

x-update-NAME="value" Update the attribute NAM@ith the specified value in the matching element.

2.6.4.3. Attribute patching

Once a match is found for a given XML element, it is possible to alter the value of the attributes of this matching
element using special attributes.

The name of these special attributes has the form x-command-nam&he name part is the name of an attribute to
alter in the element.

The possible special attributes are:

¥ x-add-name="value"
Add the attribute namewith the specified value in the matching element. If the attribute already existed, it is
replaced.

¥ x-update-name="value"
Update the attribute namewith the specified value in the matching element, only if the attribute already
existed.

¥ x-delete-name=""
Delete the attribute name in the matching element.

2.6.4.4. Element patching

Similarly, the special attribute x-node is used to add or delete an entire XML element.

¥ x-node="delete"
The matching node is completely removed.

¥ x-node="delete(X)"

36

Version 3.39-3922 TSDuck Userls Guide

The next parent with name Xabove the matching node is completely removed.

¥ x-node="add"
In this case, the matching node is the parent one. The inner node with attribute x-node="add" is added in the
matching node (without the special attributes, of course).

2.6.4.5. Examples

Complete examples are available in section 5.1.8.

Smaller examples are shown in the patch file below:

<tsduck>

E <PAT>

E <service service_id= "10" x-add-program_map_PID4000"/> <I--[1] -->
E <service service_id= "20" x-delete-program_map_PID" /> <l--[2] -->
E <service service_id= "30" x-node='delete" /> <l--[3] -->
E <service>

E </PAT>

E <PATtransport_stream_id= "100">
E <service service id= "80" program_map_PID800" x-node='add"/> <!-- [4] -->
E </PAT>

E <PATtransport_stream_id= "200" x-node='delete" /> <l-- [5] -->

E <EIT>
<event>
<parental_rating_descriptor>
<country rating= "0x07" x-node="delete(EIT)" /> <l-- [6] -->
</parental_rating_descriptor>
</event>
E </EIT>

m> e mp e mp

</tsduck>

In [1], any service with id 10 in any PAT is updated with attribute program_map_PID="1000"

In [2], in any service with id 20 in any PAT, the attribute program_map_PIi3 deleted (this results in an invalid PAT
but this is for the demonstation only).

In [3], any service with id 30 in any PAT is deleted.

In [4], in any PAT with transport_stream_id 100, a new service is added with service_id 80 and program_map_PID
800.

In [5], any PAT with transport_stream_id 200 is deleted.

In [6], an EIT is deleted when it contains an event which contains a parental_rating_descriptor ~ with rating equals
to Ox07.

2.6.4.6. Symbols and conditions

So far, we can modify, add or delete XML elements based on their name or the value of some of their attributes.
Symbols and conditions allow to alter elements based on conditions which were found in previous other
elements.

Symbols are words starting with a letter and made of alphanumerical characters and underscores. Symbol names
are case sensitive. Symbols are defined in a global repository. This global repository it maintained all along the

37

TSDuck Useris Guide Version 3.39-3922

processing of a patch file.

Conditions are boolean expressions which are evaluated based on the definition of symbols. A symbol evaluates
to true when it is defined and false when it is not. The unary operator ! is the negation. The binary operators &&
and || form logical expressions. Parentheses can be used to group sub-expressions.

The following special attributes define symbols and conditions.

¥ x-define="NAME"
If the enclosing element is selected, the symbol NAMES defined in the global repository. The definition applies
starting with the processing of the enclosing element.

¥ x-undefine="NAME"
If the enclosing element is selected, the symbol NAMiS undefined from the global repository. The removal of
the symbol applies starting with the processing of the enclosing element.

¥ x-condition="EXPRESSION"
The EXPRESSIG8\evaluated based on symbols. If the expression is true, the enclosing element is selected for
patching. This is, in principle, similar to the attribute matching as described above. If the expression is false,
the enclosing element is ignored.

Consider the following example. The idea is to transform any splice_insertcommand in a splice_information_table
into a splice_nullcommand when the splice is an "out of network” command.

<tsduck>

E <splice_information_table x-undefine= "NULLIFY* <l--[1] -->
E <splice_insert out_of network="true" x-define= "NULLIFY"x-node="delete" /> <!--[2] -->
E <splice_null x-condition= "NULLIFY" x-node="add"/> <l-- [3] -->
E <splice_avail_descriptor ~ x-condition= "NULLIFY" x-node="delete" /> <l-- [4] -->
E </splice_information_table>

</tsduck>

In [1], the symbol NULLIFYis undefined. This is a cleanup operation in the case it was defined during the
processing of a previous table.

In [2], a <splice_insert> element is deleted when its attribute out_of network= is true . This is a regular attribute
matching, as defined earlier. Additionally, the symbol NULLIF\s defined when such an element is found.

In [3], a <splice_null> element is added when NULLIFYis defined. In practice, this means that a <splice_null>
element is added only when a previous <splice_insert> was deleted.

In [4], using the same principle, we delete any <splice_avail_descriptor> node when a previous <splice_insert>
was deleted. This type of descriptor is typically used with a <splice_insert> command but is useless with a
<splice_null> command.

2.7.JSON and "normalized" report formats

TSDuck uses various text formats for report files. They are briefly described here.

2.7.1. "Normalized" reports

The name normalized report refers to a predictable text format which can be easily parsed using scripts to
automate operations. This is an alternative output format for tools which otherwise produce reports in a human-
friendly readable format which is harder to parse and may change in future versions.

Normalized reports are created by the commands tsanalyze, tscmp tsdektec and the plugin analyze. Each
command documents its own normalized format. A normalized report is usually requested using the option
--normalized .

38

Version 3.39-3922 TSDuck Userls Guide

The original idea of normalized reports was a format which could be easily parsed using basic UNIX tools such as
grep and sed. See sample usages in section 5.2.8, section 5.2.12, section 5.2.13, section 5.2.14.

2.7.2. JSON files
While the previous normalized reports are easy to parse in scripts, they were created in a time where no widely
used standard parser-friendly format existed. Nowadays, most standard parsable files use the JSON format.

The open-source tool named jq (for JSON Query) is available on all operating systems as a standard package and
makes the use of JSON files in scripts even easier than grep and sed with normalized report files.

All TSDuck tools and plugins which can produce normalized report can also produce JSON reports using the
option --json .

With the option --json-line , the JSON text is output as one single line through the message logger (the standard
error device by default). This feature is equivalent to the inline output XML format and can be useful for third
party applications. See section 2.6.2 for details and usage examples.

2.7.3. Automated XML-to-JSON conversion
With TSDuck, JSON is used for analysis reports while XML is used to store more complex configuration or data
structures such as PSI/SI tables.

An application which needs to analyze the PSI/SI tables which are extracted by some TSDuck command or plugin
can simply parse the extracted XML text. Although many tools and libraries exist to parse XML, some developers
may prefer to parse JSON rather than XML. In that case, TSDuck provides an automated XML-to-JSON conversion.

2.7.3.1. Conversion rules

There is no standard way to convert XML to JSON. Several tools exist and each of them has its own conversion
rules. Because of the differences between XML and JSON, no conversion is perfect, and the result is sometimes
not what would have been specified if JSON had been used from the beginning. However, the result is usually
good enough for automatic parsing in an application.

The translation rules for the TSDuck automated XML-to-JSON conversion are described below. Note that the
default rules can be fine-tuned using an XML model for the input document (see section 2.6.3) and specific
command line options (see section 2.7.3.2).

¥ Each XML element is converted to a JSON object {E} .

¥ The name of the XML element is an attribute "#name"inside the object.

¥ All attributes of the XML element are directly mapped into attributes in the JSON object.
I By default, attribute values are converted to JSON strings.

I If the XML model has a value for this attribute and if this model value starts with "int" or "uint" (not case
sensitive) and the attribute value can be successfully converted to an integer, then the value becomes a
JSON number.

I Similarly, if the XML model value for this attribute starts with "bool" and the value can be successfully
converted to a boolean, then the value becomes a JSON literal True or False.

¥ The children nodes inside an element are placed in a JSON array with name "#nodes".

¥ Each XML text node is converted to a JSON string. If the XML model has a value for this text node and if this
XML model value starts with "hexa" (not case sensitive), then all spaces are collapsed inside the string.

¥ XML declarations, comments and unknown nodes are dropped.

The introduction of the two artificial attributes "#name"and "#nodes" was necessary because of the differences

39

TSDuck Useris Guide Version 3.39-3922

between XML and JSON. It could have been tempting to use the XML element name as JSON attribute name and
the rest of the XML element (attributes and children nodes inside a JSON object) as JSON attribute value. However,
while an XML element may contain several children elements with the same name, a JSON object cannot have
several attributes with the same name. Thus, the XML element name had to be pushed inside the JSON element,
not as its name, outside of the object.

Sample XML source:
<PATversion="12" current= "true" transport_stream_id= "0x0438" network_PID=0x0010">
E <service service_id= "0x2261" program_map_PID8x0064"/>

E <service service_id= "0x2262" program_map_PID8x00C8"7>
</PAT>

Converted JSON:

{

E "#name® "PAT",

E "current" : true,

E "network_pid" : 16,

E "transport_stream_id" : 108Q
E "version" : 12,

E "#nodes™: |

E {

E "#name" "service" ,

E "program_map_pid* 100,
E "service id" : 8801

E }

E {

E "#name* "service" ,

E "program_map_pid* 200,
E "service_id" : 8802

E }

E

}

The command tsxml can be used to test the JSON conversion of any arbitrary XML file.

2.7.3.2. TSDuck options for automated XML-to-JSON conversion

The following command line options are used in various TSDuck commands and plugins to fine-tune the
automated XML-to-JSON conversion.

--x2j-collapse-text

When converting all XML text nodes into JSON strings, remove leading and trailing spaces. Also replace all other
sequences of space characters (including line breaks) with one single space.

By default, text nodes are collapsed only when there is an XML model which identifies the text node as containing
hexadecimal content.

--x2j-enforce-boolean

When an attribute in an element contains a boolean value (ie. the string "true" or "false") but there is no XML
model file to tell if this is really a boolean, force the creation of a JSON literal True or False.

By default, when there is no XML model, all element attributes are converted as JSON strings.
--x2j-enforce-integer

When an attribute in an element contains an integer value but there is no XML model file to tell if this is really an

40

Version 3.39-3922 TSDuck Userls Guide

integer, force the creation of a JSON number.

By default, when there is no XML model, all element attributes are converted as JSON strings.
--x2j-include-root

Keep the root of the XML document as a JSON object.

By default, the JSON document is made of a JSON array containing all JSON objects resulting from the conversion
of all XML elements under the root.

Usually, in an XML file, there is one root element without attributes. The root of all TSDuck XML files is a simple
<tsduck> element. This single root XML element is required by the XML syntax but usually carries no useful
information. This is why it is removed by default in the XML-to-JSON conversion.

--X2j-trim-text
When converting all XML text nodes into JSON strings, remove leading and trailing spaces.

By default, text nodes are trimmed only when there is an XML model which identifies the text node as containing
hexadecimal content.

41

TSDuck Useris Guide Version 3.39-3922

Chapter 3. Transport Stream Utilities

The TSDuck transport stream toolkit provides several command-line utilities. The main one is tsp, the transport
stream processor. The other utilities are small tools which work on transport stream files.

With a few exceptions, the transport stream files are continuous streams of 188-byte TS packets. These files can
also be pipes. With the help of tsp and its input and output plugins, the TS packets can be piped from and to

various devices and protocols (files, DVB-ASI, DVB-S, DVB-C, DVB-T, multicast IP, etc.)

The following table lists all transport stream utilities:

Table 4. TSDuck utilities

Command Description

tsanalyze Analyze a TS file and display various information about the transport stream and each
individual service and PID.

tshitrate Evaluate the original bitrate of a TS based on the analysis of the PCRis and the number of
packets between them.

tscharset Test tool for DVB and ARIB character sets.

tscmp Compare the binary content of two TS files.

tsconfig Configuration options to build applications (developers only).

tscrc32 Compute MPEG-style CRC32 values.

tsdate Display the date & time information (TDT & TOT) from a TS file.

tsdektec Control a Dektec device.

tsdump Dump the content of a TS file.

tsecmg DVB SimulCrypt-compliant ECMG stub for system integration and debug.

tseit Manipulate EITis using commands and scripts.

tsemmg DVB SimulCrypt-compliant EMMG stub for system integration and debug.

tsfclean Cleanup the structure and boundaries of a TS file.

tsfixce Fix continuity counters in a TS file.

tsftrunc Truncate a TS file, removing extraneous bytes (last incomplete TS packet) or truncating
after a specified TS packet.

tsfuzz Introduce random errors in transport stream files.

tsgenecm Generate one ECM using any DVB SimulCrypt compliant ECMG.

tshides List HiDes modulator devices.

tslatencymonitor Monitor latency between two TS input sources.

tslsdvb List DVB receiver devices.

tsp General-purpose TS processor: receive a TS from a user-specified input plugin, apply
MPEG packet processing through several user-specified packet processor plugins and
send the processed stream to a user-specified output plugin.

tspacketize Packetize PSI/SI tables in a transport stream PID.

tspcap Analyze pcap and pcap-ng files.

tspcontrol Send control commands to a running tsp.

42

Version 3.39-3922 TSDuck Userls Guide

Command Description

tspsi Display the PSI (PAT, CAT, NIT, PMT, SDT) from a TS file.

tsresync Resynchronize a captured TS file: locate start of first packet, resynchronize to next packet
after holes, convert to 188-byte packets (if captured with 204-byte packets).

tsscan Scan frequencies in a DVB network.

tssmartcard List or reset smart-card reader devices.

tsstuff Add stuffing to a TS file to reach a target bitrate.

tsswitch Transport stream input source switch using remote control.

tstabcomp PSl1 / Sl table compiler from / to XML files.

tstabdump Dump binary table files, as previously saved by tstables .

tstables Collect specified PSI/SI tables from a TS file. Either display them or save them in binary
files.

tsterinfo Compute or retrieve various DVB-T (terrestrial) information.

tstestecmg Test a DVB SimulCrypt compliant ECMG with an artificial load.

tsvatek List VATek-based modulator devices.

tsversion Check version, download and upgrade TSDuck.

tsxml Test tool for TSDuck XML files manipulation.

3.1. Command line syntax

3.1.1. Command line options
All utilities are simple command-line tools. They accept options and parameters. The syntax of options follows the
GNU getopt_long(3) conventions. See the corresponding Linux manual page for details.

In short, this means that all options have a long name preceded by a double dash and optionally a short name (one
dash, one letter). Long options can be abbreviated if there is no ambiguity.

Although this syntax is inspired by Linux and the GNU utilities, the same syntax is used on TSDuck for Windows.

As an example, consider a utility which accepts the two options --verbose (short name -v) and --version (no short
name). Then, the verbose mode can be equally triggered by -v, --verbose , --verb but not --ver since there is an
ambiguity with --version .

3.1.2. Integer values in command line options
When an option or parameter is documented to require an integer value (PID, identifier, etc.), this value can be
uniformly specified in decimal or hexadecimal format with the Ox prefix.

In decimal values, the commas which are used as separators for groups of thousands are ignored. Most
commands display large values with separators in order to improve the readability. Therefore, these values can be
simply copied / pasted in subsequent command lines.

Example: The following options are equivalent:

--count 3,100,456
--count 3100456
--count O0x002F4F28

43

TSDuck Useris Guide Version 3.39-3922
When the same option is allowed to be specified several times in one command, it is possible to use ranges of
integer values (two values, separated with a dash) instead of specifying all values individually.

Example: The following sets of options are equivalent:

--pid O --pid 0x20 --pid O0x21 --pid 0x22 --pid 0x23 --pid 0x24 --pid 0x25 --pid 0x40
--pid 0 --pid 0x20-0x25 --pid 0x40

3.1.3. Predefined common options

All commands accept the following common options:
--debug[=N]
Produce verbose debug output. Specify an optional debug level N. Do not use this option in normal operation.

Without this option, no debug output is produced. When the option is specified but not the level N, the default
debug level is 1, that is to say a reasonable amount of information. The higher the debug level is, the more output
is produced.

The amount of debug information depends on the command. Some commands do not generate any debug
information.

--help
The option displays the syntax of the command and exits.

If either the standard output or the standard error is a terminal, the help text is "paged" through a system utility
such as less or more whichever is available. The environment variable PAGEBan be used to specify an alternate
pager command with its parameters (see section 3.1.4).

To redirect the help text to a file, you must redirect both the standard output and standard error. Otherwise, since
at least one of the two is a terminal, the pager will be used. Example: tsp --help &>help.txt

All tsp plugins also accept the option --help which provides help on this specific plugin.
--verbose

Display verbose information.

--version [=name]

The option displays the TSDuck version and exits.

The optional name indicates which type or format of version to display. The default is long. Other values are
described in the table below.

Table 5. Values for option --version

Name Description

acceleration Availability of accelerated instructions for CRC32, AES, etc.
all All information.
bitrate Representation of bitrate values in computations. Using compilation options, bitrates can be

represented as fixed-point values, floating-point values, integer values or integer fractions. See
section 2.2 for more details.

compiler Compiler name and version.

crypto Version of the cryptographic library.

date Build date.

dektec Version of the Dektec drivers and DTAPI library.

44

Version 3.39-3922 TSDuck Userls Guide

Name Description

http Version of the HTTP/HTTPS library.

integer TSDuck version as one integer value which can be used in scripts to test against minimum
required versions. Example: "32802466".

long TSDuck version in long string format. This is the default.

nsis TSDuck version in NSIS directive format (legacy, no longer used).

rist Version of the RIST library.

short TSDuck version is short format. Example: "3.28-2466".

srt Version of the SRT library.

system Description of the running system.

vatek Version of the VATek library (for VATek-based modulators).

Example:

$ tsp --version =all

tsp: TSDuck - The MPEG Transport Stream Toolkit - version 3.28-2466

Built Aug 10 2021 - 23:09:27

Using GCC 10.3.0, C++ std 2011.03

System: Ubuntu (Ubuntu 21.04), on Intel x86-64, 64-bit, little-endian, page size:
4096 bytes

Bitrate: 64-bit fixed-point with 1 decimals

Web library: libcurl: 7.74.0, ssl: OpenSSL/1.1.1j, libz: 1.2.11

SRT library: libsrt version 1.4.2

Dektec: DTAPI: 5.45.0.172

3.1.4. Using a pager command

Some commands which produce a very verbose output are automatically redirected to a pager command such as
less or more whichever is available. The redirection is performed only when the standard output is a terminal.

The environment variable PAGE&an be used to specify an alternate pager command with its parameters.

The TSDuck commands which can send their output to a pager always define the --no-pager option to disable the
redirection even when the standard output is a terminal.

3.1.5. Partial command line redirection from a file

In any TSDuck command, it is possible to read some or all options and parameter from a file. The syntax is
@filenamewhere filename is a text file containing options and parameters.

In the text file, each line must contain exactly one item (option name, option value or parameter).

Sample command:

$ tsp -v @dvb.txt -P until --seconds 20 -P analyze -o out.txt -Odrop
The file dvb.txt contains a list of command line items, one per line. The content of the file dvb.txt exactly replaces

the expression @dvb.txt.

Sample content of this file:

45

TSDuck Useris Guide Version 3.39-3922

-l

dvb

--frequency
12,169,000,000
--symbol-rate
27,500,000
--fec-inner

3/4

--polarity
horizontal
--delivery-system
DVB-S2
--modulation
8-PSK

Note that each line contains exactly one command line item. Spaces or special characters are not filtered or
interpreted. Using that kind of command can be useful in several situations:

¥ When a custom application generates long and complicated TSDuck commands.

¥ When the options or parameters contain special characters, spaces or any other sequence which must be
properly escaped with some shells, possibly differently between shells or operating systems.

Command line parameter redirections can be nested. When one line of such a text file contains a pattern
@filename the second file is inserted here.

Finally, if a parameter really starts with a @character (which can be possible in a service or device name for
instance), use a double @ @ indicate that this is a literal @character and not a redirection.

Consider the following command:

$ tsp -v @dvb.txt -P zap @ @hom drop

This command reads parameters from the file dvb.txt to find the tuning options and extracts the service named
@homavith one @. The double @has been used to indicate that this is a literal @

And since redirections can be nested, the initial @ @scape sequence can also be used inside text files containing
parameters.

3.1.6. Default options from the TSDuck configuration file
It is possible to specify default command line options or alternate options in a global configuration file. This
configuration file is specific per user.

See appendix A for a complete reference of the TSDuck configuration file.

3.1.7. Bash command line completion

For bash users, when the bash-completion package is installed, specific completion scripts are added for TSDuck.
Plugin names, command and plugin options, predefined enumeration values for options are automatically
completed.

On Linux, the completions are automatically defined.
On macOS with Homebrew, there is no TSDuck-specific setup but the Homebrew-defined bash completions, as a

whole, must have been previously enabled. Add the following line to your .bashrc file:

[[-e $(brew --prefix)/etc/profile.d/bash_completion.sh 1] &&\

46

Version 3.39-3922 TSDuck Userls Guide

E source $(brew --prefix)/etc/profile.d/bash_completion.sh

On Windows with Cygwin or Msys, add the following TSDuck-specific line to your .bashrc file:

source "$TSDU@€tup/tsduck-completion.bash”

The rest of this chapter documents all TSDuck utilities, in alphabetical order.

47

TSDuck Useris Guide Version 3.39-3922

3.2. tsanalyze

Transport stream analysis

This utility analyzes a transport stream. It reports either a full analysis of the transport stream, services and PIDis
(either in human readable format or normalized format for automatic analysis) or selected individual information.

The output can include full synthetic analysis (options --*-analysis), full normalized output (options --normalized
and --json) or a simple list of values on one line (options --*list). The second and third type of options are
useful to write automated scripts.

If output control options are specified, only the selected outputs are produced. If no such option is given, the
default is:

$ tsanalyze --ts-analysis --service-analysis --pid-analysis --table-analysis

See also the plugin analyze for tsp for the equivalent tool in the context of tsp. This plugin analyzes the stream at
a specific point in a TS processing pipeline.

Usage

$ tsanalyze [options] [input-file]

Input file
MPEG transport stream, either a capture file or a pipe from a live stream (see option --format for binary formats).

If the parameter is omitted, is an empty string or a dash (-), the standard input is used.

General purpose options

-b value
--bitrate value

Specifies the bitrate of the transport stream in bits/second (based on 188-byte packets). By default, the bitrate is
evaluated using the PCR in the transport stream. If no bitrate can be determined (no user-specified value, no PCR),
the analysis will not report the bitrates of the individual services and PIDIs.

See section 2.2 for more details on the representation of bitrates.

--format name

Specify the format of the input transport stream. See section 2.1.2 for more details.
--no-pager

Do not send output through a pager process. By default, if the output device is a terminal, the output is paged.
See section 3.1.4 for more details.

Analysis control options

These options are identical in the command tsanalyze and the tsp plugin analyze.
--suspect-max-consecutive value

Specifies the maximum number of consecutive suspect packets. The default value is one. If set to zero, the
suspect packet detection is disabled.

Suspect packets are TS packets which are technically correct but which may be suspected of being incorrect,
resulting in analysis errors. Typically, in the middle of a suite of packets with un-correctable binary errors, one
packet may appear to have no such error while it has some errors in fact. To avoid adding this type of packets in
the analysis, a packet is declared as suspect (and consequently ignored in the analysis) when:

48

Version 3.39-3922 TSDuck Userls Guide

¥ its PID is unknown (no other packet was found in this PID)

¥ itimmediately follows a certain amount of packet containing errors (see option --suspect-min-error-count)

¥ it immediately follows no more than the specified number consecutive suspect packets.
--suspect-min-error-count value

Specifies the minimum number of consecutive packets with errors before starting suspect packet detection. See
also option --suspect-max-consecutive .

The default value is one. If set to zero, the suspect packet detection is disabled.

Output control options

These options are identical in the command tsanalyze and the tsp plugin analyze.
--deterministic

Enforce a deterministic and reproduceable output. Do not output non-reproduceable information such as system
time (useful for automated tests).

--error-analysis
Report analysis about detected errors.
--global-pid-list

Report the list of all global PIDis, that is to say PIDis which are not referenced by a specific service but are standard
DVB PSI/SI PIDis or are referenced by them. This include, for instance, PIDis of the PAT, EMMis, EITis, stuffing, etc.

--normalized

Complete report about the transport stream, services, PIDis and tables in the old normalized output format. This
type of output is useful for automatic analysis in scripts.

--pes-pid-list

Report the list of all PIDis which are declared as carrying PES packets (audio, video, subtitles, etc).

--pid-analysis

Report analysis for each PID.

--pid-list

Report the list of all PIDis.

--prefix 'string'

For one-line displays (options --*-list), prepend the specified string to all values. For instance, options --global
--prefix -p outputs something like -p 0 -p 1 -p 16 , which is an acceptable option list for the tsp plugin filter

--service-analysis

Report analysis for each service.

--service-list

Report the list of all service ids.

--service-pid-list value

Report the list of all PIDis which are referenced by the specified service id.
--table-analysis

Report analysis for each table.

--title 'string’

Display the specified string as title header.

--ts-analysis

49

TSDuck Useris Guide Version 3.39-3922

Report global transport stream analysis.
--unreferenced-pid-list

Report the list of all unreferenced PIDIs, that is to say PIDis which are neither referenced by a service nor known as
or referenced by the standard DVB PSI/SI.

-w
--wide-display

Use a wider grid display with more information on each line.

JSON output options

--json

Produce a report in JSON output format. Useful for automatic analysis.
--json-buffer-size value

With --json-tcp or --json-udp , specify the network socket send buffer size.
--json-line [='prefix’]

Same as --json but report the JSON text as one single line in the message logger instead of fully formatted output
file.

The optional string parameter specifies a prefix to prepend on the log line before the JSON text to facilitate the
filtering of the appropriate line in the logs.

--json-tcp address:port
Same as --json but report the JSON text as one single line in a TCP connection instead of the output file.

The address specifies an IP address or a host name that translates to an IP address. The port specifies the
destination TCP port.

By default, a new TCP connection is established each time a JSON message is produced (see also option --json
-tcp-keep). Be aware that a complete TCP connection cycle may introduce some latency in the processing. If
latency is an issue, consider using '--json-udp'.

--json-tcp-keep

With --json-tcp , keep the TCP connection open for all JSON messages. By default, a new TCP connection is
established each time a JSON message is produced.

--json-udp address:port

Same as --json but report the JSON text as one single line in a UDP datagram instead of the output file.

The address specifies an IP address which can be either unicast or multicast. It can be also a host name that
translates to an IP address. The port specifies the destination UDP port.

Be aware that the size of UDP datagrams is limited by design to 64 kB. If larger JSON contents are expected,
consider using --json-tcp

--json-udp-local address

With --json-udp , when the destination is a multicast address, specify the IP address of the outgoing local
interface. It can be also a host name that translates to a local address.

--json-udp-ttl value

With --json-udp , specifies the TTL (Time-To-Live) socket option. The actual option is either "Unicast TTL" or
"Multicast TTL", depending on the destination address. Remember that the default Multicast TTL is 1 on most
systems.

Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.

50

Version 3.39-3922 TSDuck Userls Guide

--abnt

Assume that the transport stream is an ISDB one with ABNT-defined variants. See section 2.4.2 for more details.
--atsc

Assume that the transport stream is an ATSC one. See section 2.4.2 for more details.

--brazil

A synonym for --isdb --abnt --default-charset RAW-ISO-8859-15 --time-reference UTC-3 . This is a handy shortcut
when working on South American ISDB-Tb transport streams. See section 2.4.2 and section 2.5.2 for more details.

--default-charset name

Default character set to use when interpreting strings from tables and descriptors. By default, the standard DVB
encoding is used. See section 2.5 for more details.

--default-pds value

Default DVB-defined private data specifier (PDS). See section 2.4.2 for more details.

--europe

A synonym for --default-charset ISO-8859-15 . See section 2.5 for more details.
--ignore-leap-seconds

Do not explicitly include leap seconds in some UTC computations. See section 2.4.2 for more details.
--isdb

Assume that the transport stream is an ISDB one. ISDB streams are normally automatically detected from their
signalization. This option is only useful when ISDB-related stuff are found in the TS before the first ISDB-specific
table. See section 2.4.2 for more details.

--japan

A synonym for --isdb --default-charset ARIB-STD-B24 --time-reference JST . See section 2.4.2 and section 2.5.2
for more details.

--philippines

A synonym for --isdb --abnt --default-charset RAW-UTF-8 --time-reference UTC+8 . This is a handy shortcut when
working on Philippines transport streams. See section 2.4.2 and section 2.5.2 for more details.

--time-reference name
Use a non-standard time reference in DVB or ISDB-defined Sl. See section 2.4.2 for more details.
--usa

A synonym for --atsc . This is a handy shortcut when working on North American transport streams. See section
2.4.2 and section 2.5.2 for more details.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

51

TSDuck Useris Guide Version 3.39-3922

Normalized output format

In normalized output, each line describes one object (service, PID, table, etc). The format of each line is:

type:name[=value]:...

The type identifies the kind of object which is described by the line. The name identifies a characteristics for the
object with an optional value. There is no space characters. All integer values are in decimal format.

The normalized syntax can be used to search for specific objects with specific characteristics. It is specially
designed to extract values using standard UNIX tools such as sed and grep.

Example: The following sample command extracts the list of EMM PIDIis for the SafeAccess CAS. The object type is
pid (at the beginning of line) and the two selected characteristics are emnfno value) and cas with SafeAccess DVB-
assigned CA_system_id value (0x4ADC, which is 19164 in decimal).

$ tsanalyze --normalize ... | \
E grep "pid: | grep “emm: | grep “cas=19164:" | \
E sed -e 's/.*:pid=//" -e s/

Other more complex examples of automated scripts are available in chapter 5.

Obsolescence: Note that this format was designed in the early times of TSDuck. Nowadays, more modern
formats such as JSON are more appropriate. The option --json can be used instead of --normalized to produce a
JSON report. Such an output is easily manipulated and explored using the open source tool q .

Normalized object types

The list of types, at beginning of lines, is the following:

ts: Global transport stream description. There is always one single ts line.
global: Summary of global PIDIs, ie. not attached to a specific service. There is always one single global
line.

unreference Summary of unreferenced PIDis, ie. neither global nor attached to a specific service. There is always

d: one single unreferenced line.

service: Description of one service. There is one service line per service.

pid: Description of one PID. There is one pid line per PID.

table: Description of one table on one PID. There is one table line per unique table per PID.
time: Time description, either from the TDT/TOT tables or from the running system.

Normalized transport stream characteristics

The characteristics in ts: lines are:

[id=int: Optional. Transport stream id, when found.
‘packets=int: Total number of TS packets.

‘bytes=int: Total number of bytes.

‘services=int: Number of services.

:Clearservices=int Number of clear (not scrambled) services.

:scrambledservices Number of scrambled services.
=int:

52

Version 3.39-3922

:pids=int:
:clearpids=int:

:scrambledpids=int

‘perpids=int:

:unreferencedpids=
int:

:invalidsyncs=int:

:transporterrors:i
nt

:suspectignored=in
t

-bitrate=int:
:bitrate204=int:

:userbitrate=int:

:userbitrate204=in
t.

:pcrbitrate=int:

:pcrbitrate204=int

:duration=int:

:country=name:

TSDuck Userls Guide

Number of PIDis.
Number of clear (not scrambled) PIDis.

Number of scrambled PIDis.

Number of PIDis with PCRIs.

Number of unreferenced PIDis.

Number of TS packets with invalid synchronization byte.

Number of TS packets with transport error indicator.
Number of suspect TS packets which were ignored in the analysis.

Best value for transport stream bitrate in b/s.
Same as previous, based on 204-byte packets.

User-specified value for transport stream bitrate in b/s. Zero if none. When used within tsp
plugin, the user-specified bitrate comes from previous plugins in the chain.

Same as previous, based on 204-byte packets.

Estimated transport stream bitrate in b/s, based on PCR analysis. Zero if unable to analyze
PCR (no or not enough PCR, too many discountinuities, etc.)

Same as previous, based on 204-byte packets.

Duration of transmission in seconds, based on TS bitrate.

Optional. First region name in TOT.

Normalized global and unreferenced PIDis summary characteristics

The characteristics in global:

‘pids=int:
:Clearpids=int:
:scrambledpids=int:
packets=int:
‘bitrate=int:
:bitrate204=int:

:access=type:

:pidlist=int,int,E

and unreferenced: lines are:

Total number of global or unreferenced PIDIs.

Number of clear (not scrambled) global or unreferenced PIDis.
Number of scrambled global or unreferenced PIDis.

Total number of TS packets in global or unreferenced PIDs.
Total bitrate of global or unreferenced PIDIs.

Same as previous, based on 204-byte packets.

Value is scrambled if there is at least one scrambled PID in the category and clear
otherwise.

List of global or unreferenced PIDis

Normalized service characteristics

The characteristics in service:

id=int:

‘tsid=int:

lines are:

Service id.

Optional. Transport stream id, when found.

53

TSDuck Useris Guide

:orignetwid=int:
:len=int:
:servtype=int:
:access=type:
:pids=int:
:clearpids=int:

:scrambledpids=i
nt:

:packets=int:
:bitrate=int:
‘bitrate204=int:
-hidden:

issu:

‘t2mi:
;pmtpid=int:
perpid=int:

:pidlist=int,int
E:

:provider=name:

‘name=name

Version 3.39-3922

Optional. Original network id, when found.

Optional. Logical channel number, when found.

Service type.

Value is scrambled if there is at least one scrambled PID in the service and clear otherwise.
Number of PIDis in the service. Note that ECM PIDis are also included.

Number of clear (not scrambled) PIDis in the service.

Number of scrambled PIDIs in the service.

Total number of TS packets in the service.

Total bitrate of the service in b/s.

Same as previous, based on 204-byte packets.

Optional. Indicate that the service is hidden from end-user.

Optional. Indicate that the service carries a System Software Update PID.

Optional. Indicate that the service carries a T2-MI (DVB-T2 Modulator Interface) PID.
Optional. PID of the servicels PMT.

Optional. PCR PID of the service, as declared in the PMT.

List of PIDis in the service.

Service provider name.

Service name. Note that this is always the last item in the line. The value is not terminated by
acolon (:). So, if a colon is present, it is part of the service name.

Normalized PID characteristics

The characteristics in pid: lines are:

‘pid=int:

pmt:

:ecm:

:emm:
:cas=int:
:operator=int:

:access=type:

:cryptoperiod=int:

:streamid=int:

:audio:

:video:

:language=name:

:servcount=int:

54

PID number.

Optional. Indicate that this is a PMT PID.
Optional. Indicate that this is an ECM PID.
Optional. Indicate that this is an EMM PID.

Optional. Related CA_system_id for ECM or EMM PIDIs.
Optional. Related CA system operator id, when applicable, for ECM or EMM PIDIs.
Value is scrambled if there is at least one scrambled packet in the PID and clear otherwise.

Optional. Average crypto-period duration in seconds for scrambled PIDis, when it can be
evaluated.

Optional. PES stream_id in PES packet headers when the PID carries PES packets and all PES
packets have the same stream_id.

Optional. Indicate that this is an audio PID.

Optional. Indicate that this is a video PID.

Optional. Indicate the language for the PID. Can be found on audio or subtitles PIDIs.

Number of services which reference this PID.

Version 3.39-3922

:unreferenced:
:global:

:servlist=int,int,
E:

:ssuoui=int,int,E

t2mi:
:plp=int,int,E:
:bitrate=int:
-bitrate204=int:
:packets=int:
:clear=int:
:scrambled=int:
:af=int:

per=int:

.discontinuities=i
nt:

:duplicated=int:

:invalidscrambling
=int:

pes=int:

:invalidpesprefix=
int:

‘unitstart=int:

:description=strin
g

TSDuck Userls Guide

Optional. Indicate that this is an unreferenced PID.
Optional. Indicate that this is a global PID.

Optional. List of service_id which reference this PID.

Optional. List of manufacturers OUI for System Software Update data PIDIs.

Optional. Indicate that the PID carries a T2-MI stream.
Optional. List of T2-MI PLP (Physical Layer Pipe) id.
Bitrate for this PID in b/s.

Same as previous, based on 204-byte packets.

Total number of TS packets in this PID.

Number of clear (not scrambled) TS packets in this PID.
Number of scrambled TS packets in this PID.

Number of TS packets with adaptation field in this PID.
Number of TS packets with PCR in this PID.

Number of discontinuities in this PID.

Number of duplicated TS packets in this PID.

Number of TS packets in this PID with invalid scrambling control value.

Optional. Number of PES packets, for PIDis carrying PES.

Optional. Number of invalid PES prefix, for PIDis carrying PES.

Optional. Number of PUSI (payload unit start indicator), for PID(s not carrying PES.

Human-readable description of this PID. Note that this is always the last item in the line.
The value is not terminated by a colon (:). So, if a colon is present, it is part of the
description.

Normalized table and sections characteristics

The characteristics in table:

‘pid=int:
‘tid=int:
‘tidext=int:
‘tables=int:
‘sections=int:

repetitionms=int:

‘minrepetitionms=i
nt:

:maxrepetitionms=i

nt:

lines are:

PID number on which the table is found.

Table id.

Optional. Table id extension, for long sections only.
Total number of occurences of the table.

Total number of sections for this table.

Optional. Average repetition rate in milliseconds (can be computed only if the transport
stream bitrate is known).

Optional. Minimum repetition rate in milliseconds (can be computed only if the transport
stream bitrate is known).

Optional. Maximum repetition rate in milliseconds (can be computed only if the transport
stream bitrate is known).

55

TSDuck Useris Guide Version 3.39-3922

‘repetitionpkt=int Average repetition rate in TS packets interval.

‘minrepetitionpkt=" Minimum repetition rate in TS packets interval.
int:

‘maxrepetitionpkt= Maximum repetition rate in TS packets interval.

int:

firstversion=int: Optional. Version number of first occurrence of the table. For long sections only.
‘lastversion=int: Optional. Version number of last occurrence of the table. For long sections only.
‘versions=int,int, Optional. List of all version numbers of the table. For long sections only.

E:

Normalized time characteristics

The characteristics in time: lines are:

‘utc: Optional. The specified time is UTC.

‘local: Optional. The specified time is local time.

‘tdt: Optional. The specified time is extracted from a TDT.

‘tot: Optional. The specified time is extracted from a TOT.

‘system: Optional. The specified time is an operating system time, not extracted from the transport
stream.

first: Optional. The specified time is the first one in its category (first TDT or TOT, system time of
first packet).

last: Optional. The specified time is the last one in its category (last TDT or TOT, system time of

last packet).
-date=dd/mm/yyyy: Date part of the time, example: "24/11/2008".
‘time=hhhmmmsss: Hour, minute and second part of time, example: "14h12m45s".

‘secondsince2000=i Number of seconds since 1st January 2000. Can be used to compute duration, to compare

nt time values, etc.

‘country=name: Optional. First region name in TOT, if the time comes from a TOT.

56

Version 3.39-3922 TSDuck Userls Guide

3.3. tsbitrate

Bitrate evaluation from PCR

This utility evaluates the original bitrate of a transport stream based on an analysis of the PCRis (Program Clock
Reference timestamps) and the interval between them. This is especially useful for captured files where the
transmission bitrate information is lost.

Usage

$ tsbitrate [options] [input-file]

Input file
MPEG transport stream, either a capture file or a pipe from a live stream (see option --format for binary formats).

If the parameter is omitted, is an empty string or a dash (-), the standard input is used.
Options

-a
--all

Analyze all packets in the input file. By default, stop analysis when enough PCR information has been collected.

-d
--dts

Use DTS (Decoding Time Stamps) from video PIDIis instead of PCR (Program Clock Reference) from the transport
layer.

--format name
Specify the format of the input transport stream. See section 2.1.2 for more details.

-f
--full

Full analysis. The file is entirely analyzed (as with --all) and the final report includes a complete per PID bitrate
analysis.

-i
--ignore-errors

Ignore transport stream errors such as discontinuities. When errors are not ignored (the default), the bitrate of
the original stream (before corruptions) is evaluated. When errors are ignored, the bitrate of the received stream
is evaluated, missing packets being considered as non-existent.

--min-pcr value

Stop analysis when that number of PCRis are read from the required minimum number of PIDis (default: stop after
64 PCRIis on 1 PID).

--min-pid value
Minimum number of PID to get PCRis from (default: stop after 64 PCRis on 1 PID).

-V
--value-only

Display only the bitrate value, in bits/seconds, based on 188-byte packets. Useful to reuse the value in command
lines.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

57

TSDuck Useris Guide

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

58

Version 3.39-3922

Version 3.39-3922 TSDuck Userls Guide

3.4. tscharset

Test tool for DVB and ARIB character sets

This utility performs manual string encoding and decoding using various DVB and ARIB character sets. It can be
used to evaluate the validity of conversions.

By default, the converted data is displayed on one line. With the --verbose option, more details are displayed such

as the string in UTF-8 or UTF-16 format.

Usage

$ tscharset [options]

Options

-C
--c-style

Output binary data in C/C++ syntax, using Ox prefix. The result can be easily copied into C/C++ source code.

-d hexa-digits
--decode hexa-digits

Decode the specified binary data according to the default character set. The encoded data shall be represented as
binary digits. Spaces are ignored.

-e "string"
--encode "string"

Encode the specified string according to the default character set. See also options --from-utf-8 and --from-utf
-16.

-6 --from-utf-16

With --encode, specify that the parameter value is a suite of binary digits representing the string in UTF-16 format.
There must be an even number of bytes.

-8 --from-utf-8
With --encode, specify that the parameter value is a suite of binary digits representing the string in UTF-8 format.

-l
--list-charsets

List all known character set names.

-0 file-name
--output file-name

Output file name. By default, use standard output.
--to-utf-16
With --decode, display an hexadecimal representation of the decoded string in UTF-16 format.

With --verbose , this option is redundant because the string is already displayed in plain form and in UTF-16
representation.

--to-utf-8

With --decode, display an hexadecimal representation of the decoded string in UTF-8 format.
With --verbose , use UTF-8 instead of UTF-16 for the alternate representation of the string.
Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.

59

TSDuck Useris Guide Version 3.39-3922

--brazil

A synonym for --default-charset RAW-1SO-8859-15 . This is a handy shortcut when working on South American
ISDB-Tb transport streams. See section 2.4.2 and section 2.5.2 for more details.

--default-charset name

Default character set to use when interpreting strings from tables and descriptors. By default, the standard DVB
encoding is used. See section 2.5 for more details.

--europe

A synonym for --default-charset ISO-8859-15 . See section 2.5 for more details.

--japan

A synonym for --default-charset ARIB-STD-B24 . See section 2.4.2 and section 2.5.2 for more details.

--philippines

A synonym for --default-charset RAW-UTF-8 . This is a handy shortcut when working on Philippines transport

streams. See section 2.4.2 and section 2.5.2 for more details.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

60

Version 3.39-3922 TSDuck Userls Guide

3.5. tscmp

Transport stream files comparison

This utility compares the binary content of two transport stream files. Selected fields may be omitted in the
comparison to allow comparing files which went through different PID remapping or resynchronization process.

Usage

$ tscmp [options] filename-1 filename-2

Input files

MPEG transport stream files to be compared (see option --format for binary formats). If a file name is an empty
string or a dash (-), the standard input is used.

Options

--buffered-packets value

Specifies the files input buffer size in TS packets. This is used with --search-reorder to look for reordered packets.
Packets which are not found within that range in the other file are considered missing.

The default is 10,000 TS packets.

-b value
--byte-offset value

Start reading the files at the specified byte offset. The default is zero.
--cc-ignore
Ignore continuity counters when comparing packets. Useful if one file has been resynchronized.

-C
--continue

Continue the comparison up to the end of files. By default, stop after the first differing packet.

-d
--dump

Dump the content of all differing packets. Also separately dump the differing area within the packets.
--format name
Specify the format of the input transport stream. See section 2.1.2 for more details.

By default, the format of each input file is automatically detected and can be different from one file to another.
When the option --format is specified, all input files must have the same format.

-m count
--min-reorder count

With --search-reorder , this is the minimum number of consecutive packets to consider in reordered sequences of
packets. This is used to avoid random isolated packets or small sets of packet, such as null packets, to be
considered as a reordered sequence.

The default is 7 TS packets.

-n
--normalized

Report in a normalized output format. Useful for automatic analysis.

-p value
--packet-offset value

61

TSDuck Useris Guide Version 3.39-3922

Start reading the files at the specified TS packet. The default is zero.

--payload-only

Compare only the payload of the packets, ignore header and adaptation field.

--pcr-ignore

Ignore PCR and OPCR when comparing packets. Useful if one file has been resynchronized.
--pid-ignore

Ignore PID value when comparing packets. Useful if one file has gone through a remapping process.

-q
--quiet

Do not output any message. The process simply terminates with a success status if the files are identical and a
failure status if they differ.

-S
--search-reorder

Search missing or reordered packets.
By default, packets are compared one by one without looking for equivalent packets somewhere else.
See also --threshold-diff ~ and --buffered-packets

-t value
--threshold-diff value

When used with --search-reorder , this value specifies the maximum number of differing bytes in packets to
declare them equal. When two packets have more differing bytes than this threshold, the packets are reported as
different and the first file is read ahead. The default is zero, which means that two packets must be strictly
identical to declare them equal.

If you find this explanation unclear, try it with a second file which contains both missing and corrupted packets.
JSON output options

_j.

--json

Produce a report in JSON output format. Useful for automatic analysis.

--json-buffer-size value

With --json-tcp or --json-udp , specify the network socket send buffer size.

--json-line [='prefix’]

Same as --json but report the JSON text as one single line in the message logger instead of fully formatted output
file.

The optional string parameter specifies a prefix to prepend on the log line before the JSON text to facilitate the
filtering of the appropriate line in the logs.

--json-tcp address:port
Same as --json but report the JSON text as one single line in a TCP connection instead of the output file.

The address specifies an IP address or a host name that translates to an IP address. The port specifies the
destination TCP port.

By default, a new TCP connection is established each time a JSON message is produced (see also option --json
-tcp-keep). Be aware that a complete TCP connection cycle may introduce some latency in the processing. If
latency is an issue, consider using '--json-udp'.

--json-tcp-keep

With --json-tcp , keep the TCP connection open for all JSON messages. By default, a new TCP connection is

62

Version 3.39-3922 TSDuck Userls Guide

established each time a JSON message is produced.
--json-udp address:port
Same as --json but report the JSON text as one single line in a UDP datagram instead of the output file.

The address specifies an IP address which can be either unicast or multicast. It can be also a host name that
translates to an IP address. The port specifies the destination UDP port.

Be aware that the size of UDP datagrams is limited by design to 64 kB. If larger JSON contents are expected,
consider using --json-tcp

--json-udp-local address

With --json-udp , when the destination is a multicast address, specify the IP address of the outgoing local
interface. It can be also a host name that translates to a local address.

--json-udp-ttl value

With --json-udp , specifies the TTL (Time-To-Live) socket option. The actual option is either "Unicast TTL" or
"Multicast TTL", depending on the destination address. Remember that the default Multicast TTL is 1 on most
systems.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

63

TSDuck Useris Guide Version 3.39-3922

3.6. tsconfig

Configuration options to build applications (developers only)
This command is installed on UNIX systems (Linux, macQOS, BSD) only.

For developers, it generates the various build options for the current operating system and is used by developers
to build their applications.

Without any option, tsconfig displays all configuration options. With one or more specific options, it outputs
command line options for the compiler, the linker or installation commands.

Usage

$ tsconfig [options]

Options

--bin

Display the directory for TSDuck executables.

--cflags

Display the pre-processor and compiler flags. In a makefile, this is used in CFLAG&1d CXXFLAGS
--config

Display the directory for TSDuck configuration files.

TSDuck extensions should store their .xml or .namesfiles there.
--help

Display command help text.

--include

Display the include directory.

--install-dvb-firmware

Linux only: download and install additional DVB firmware.

Depending on the distro, some firmware files are installed with standard packages such as linux-firmware . Some
USB tuners need additional firmware from non-standard sources. Using this option, tsconfig downloads and
installs some known additional firmware files for DVB tuners.

Must be root to use that option.

--java

Display the jar file for TSDuck Java bindings, to be added in CLASSPATH

--lib

Display the directory for TSDuck dynamic libraries (except plugins).

TSDuck extensions should store their tslibext_xxx.so libraries there (.dylib on macOS, .dll on Windows).
--libs

Display the library linking flags. In a makefile, this is used in LDLIBS

--nostdcpp

When present before --cflags , no C++ standard level is imposed in the compilation flags.

By default, the command tsconfig --cflags ~ forces C++17 as level of C++ language standard. If your application
requires a more recent level, define the environment variable TS _NOSTDC®Pany non-empty value. This disables

64

Version 3.39-3922 TSDuck Userls Guide
the C++ standard option in tsconfig . The application shall then define its own C++ standard in its command line.
This user-specified C++ standard cannot be lower than C++17.

Alternatively, the command tsconfig --nostdcpp --cflags can be used to omit the C++ standard from the
compilation options without defining the environment variable TS_NOSTDCPP

--plugin

Display the directory for TSDuck plugins.

TSDuck extensions should store their tsplugin_xxx.so libraries there (.dylib on macOS, .dll on Windows).
--prefix

Display the installation prefix.

--python

Display the directory for TSDuck Python bindings, to be added in PYTHONPATH
--S0

Display the shared object files extension (.so, .dylib , .dll).

--static-libs

Display the static library linking flags. In a makefile, this is used in LDLIBS
--vernum

Display the TSDuck version as a number.

--version

Display the TSDuck version as found in the development environment.
Sample usages

The following commands are used to build an application using the TSDuck library:

$ g++ $(tsconfig --cflags) -c app.cpp
$ g++ app.o $(tsconfig --libs) -0 app

Replace g++with clang++ if you use Clang/LLVM instead of GCC.

In a GNU makefile, the developer should use:

CXXFLAGS=+$(shell tsconfig --cflags)
LDLIBS += $(shell tsconfig ~ --libs)

If the application is a TSDuck extension providing one or more plugins, the installation commands in the makefile
are like this:

$ install -m644 tslibext_foo.so $(shell tsconfig --lib)
$ install -m644 tsplugin_ *.so $(shell tsconfig --plugin)

To use the Java and Python bindings:

$ export CLASSPAT(tsconfig --java): $CLASSPATH
$ export PYTHONPATS(tsconfig --python): $PYTHONPATH

65

TSDuck Useris Guide Version 3.39-3922

3.7. tscrc32

Compute MPEG-style CRC32 values

This utility manually computes CRC32 values, as found in MPEG sections.

Usage

$ tscr32 [options] [input-file ...]

Input files

Any number of binary input files.

If the parameter is omitted, is an empty string or a dash (-), the standard input is used.
Options

-a
--accelerated

Check if the computation of CRC32 is accelerated using specialized instructions (display yes or no).

-d hexa-data
--data hexa-data

Raw input data instead of input files. Use hexadecimal digits.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

66

Version 3.39-3922 TSDuck Userls Guide

3.8. tsdate

Date and time extraction

This utility extracts date and time information from a transport stream, namely the TDT (Time and Data Table) and
the TOT (Time Offset Table).

Usage

$ tsdate [options] [input-file]

Input file
MPEG transport stream, either a capture file or a pipe from a live stream (see option --format for binary formats).

If the parameter is omitted, is an empty string or a dash (-), the standard input is used.

Options

-a
--all

Report all TDT/TOT tables (default: report only the first table of each type).

-f name
--format name

Specify the format of the input transport stream. See section 2.1.2 for more details.

--notdt

Ignore Time & Date Table (TDT).

--notot

Ignore Time Offset Table (TOT).

Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.
--abnt

Assume that the transport stream is an ISDB one with ABNT-defined variants. See section 2.4.2 for more details.
--atsc

Assume that the transport stream is an ATSC one. See section 2.4.2 for more details.

--brazil

A synonym for --isdb --abnt --time-reference UTC-3 . This is a handy shortcut when working on South American
ISDB-Tb transport streams. See section 2.4.2 and section 2.5.2 for more details.

--ignore-leap-seconds
Do not explicitly include leap seconds in some UTC computations. See section 2.4.2 for more details.
--isdb

Assume that the transport stream is an ISDB one. ISDB streams are normally automatically detected from their
signalization. This option is only useful when ISDB-related stuff are found in the TS before the first ISDB-specific
table. See section 2.4.2 for more details.

--japan
A synonym for --isdb --time-reference JST . See section 2.4.2 and section 2.5.2 for more details.

--philippines

67

TSDuck User{s Guide Version 3.39-3922
A synonym for --isdb --abnt --time-reference UTC+8 . This is a handy shortcut when working on Philippines
transport streams. See section 2.4.2 and section 2.5.2 for more details.

--time-reference name

Use a non-standard time reference in DVB or ISDB-defined SI. See section 2.4.2 for more details.

--usa

A synonym for --atsc . This is a handy shortcut when working on North American transport streams. See section
2.4.2 and section 2.5.2 for more details.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

68

Version 3.39-3922 TSDuck Userls Guide

3.9. tsdektec

Dektec device control

This utility controls Dektec devices, which include input and/or output DVB-ASI devices or modulators (see
[Dektec]).

Restrictions

This command is available on Linux and Windows only, Intel processors only. Dektec provides no software support
on macOS and other processors. Moreover, this command may be unavailable on some Linux distributions since it
integrates a closed-source library from Dektec, which is prohibited by the policy of some distributions.

Usage

$ tsdektec [options] [device]

Device

The optional parameter is a device index, from 0 to N-1 (with N being the number of Dektec devices in the
system). The default is 0, the first device.

Use option --list-all (or -a) to have a complete list of devices in the system.
Options

-a
--list-all

List all Dektec devices available on the system.

-i port-number
--input port-number

Set the specified port in input mode. This applies to bidirectional ports which can be either set in input or output
mode. The port number of each channel can be seen using the command tsdektec -av .

-I state
--led state

Set the state of the LED on the rear panel. Useful to identify a Dektec device when more than one is present. The
state is one of off , green, red, yellow, blue, hardware See also option --wait (the led state is automatically returned
to hardware after exit).

-n
--normalized

With --all, list the Dektec devices in a normalized output format (useful for automatic analysis).

-0 port-number
--output port-number

Set the specified port in output mode. This applies to bidirectional ports which can be either set in input or output
mode. The port number of each channel can be seen using the command tsdektec -av .

-p value
--power-mode value

On DTU-315 USB modulators, set the power mode to the specified value.
Must be one of high-quality , low-power.

-r
--reset

Reset the device.

69

TSDuck Useris Guide Version 3.39-3922

-w seconds
--wait seconds

Wait the specified number of seconds before exiting.

The default if 5 seconds if option --led is specified and 0 otherwise.

JSON output options

_j.

--json

With --all , list the Dektec devices in JSON format. Useful for automatic analysis.
--json-buffer-size value

With --json-tcp or --json-udp , specify the network socket send buffer size.
--json-line [='prefix’]

Same as --json but report the JSON text as one single line in the message logger instead of fully formatted output
file.

The optional string parameter specifies a prefix to prepend on the log line before the JSON text to facilitate the
filtering of the appropriate line in the logs.

--json-tcp address:port
Same as --json but report the JSON text as one single line in a TCP connection instead of the output file.

The address specifies an IP address or a host name that translates to an IP address. The port specifies the
destination TCP port.

By default, a new TCP connection is established each time a JSON message is produced (see also option --json
-tcp-keep). Be aware that a complete TCP connection cycle may introduce some latency in the processing. If
latency is an issue, consider using '--json-udp'.

--json-tcp-keep

With --json-tcp , keep the TCP connection open for all JSON messages. By default, a new TCP connection is
established each time a JSON message is produced.

--json-udp address:port
Same as --json but report the JSON text as one single line in a UDP datagram instead of the output file.

The address specifies an IP address which can be either unicast or multicast. It can be also a host name that
translates to an IP address. The port specifies the destination UDP port.

Be aware that the size of UDP datagrams is limited by design to 64 kB. If larger JSON contents are expected,
consider using --json-tcp

--json-udp-local address

With --json-udp , when the destination is a multicast address, specify the IP address of the outgoing local
interface. It can be also a host name that translates to a local address.

--json-udp-ttl value

With --json-udp , specifies the TTL (Time-To-Live) socket option. The actual option is either "Unicast TTL" or
"Multicast TTL", depending on the destination address. Remember that the default Multicast TTL is 1 on most
systems.

Generic common command options

The following options are implicitly defined in all commands.
--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).

70

Version 3.39-3922 TSDuck Userls Guide

--help

Display the command help text.
--verbose

Produce verbose messages.
--version

Display the version number.
Normalized output format

In normalized output, each line describes one object (driver, device, channel, etc). The format of each line is:

type:name[=value]:...

The type identifies the kind of object which is described by the line. The name identifies a characteristics for the
object with an optional value. There is no space characters. All integer values are in decimal format.

The normalized syntax can be used to search for specific objects with specific characteristics. See also the
description of the command tsanalyze for another example of normalized output.

Normalized object types

The list of types, at beginning of lines, is the following:

dtapi: Description of the Dektec runtime library ("DTAPI"). There is always one single dtapi line.
driver: Description of one type of Dektec device driver.

device: Description of one Dektec device.

channel: Description of one channel inside a Dektec device.

Normalized DTAPI characteristics

The characteristics in dtapi: lines are:

:version=string: Version of the DTAPI.

Normalized driver characteristics
The characteristics in driver: lines are:
‘pei: This is a PCI driver (Dtalxx)
:usb: This is a USB driver (Dtu2xx)

version=string: Version of the driver.

Normalized device characteristics

The characteristics in device: lines are:

:address=int: USB address.
:bus=int: PCI bus number.
:device=int: Device index.
:device-id=int: Device id
‘fw-variant=int: Firmware variant.

71

TSDuck Useris Guide

:fw-version=int:
:model=string:
:nb-input=int:
:nb-output=int:
:nb-port=int:
‘pci:

:serial=int:
:slot=int:
:subsys-id=int:

:subsys-vendor-id=int:

Firmware version.
Device model name.
Count of input ports.
Count of output ports.
Count of all ports.
This is a PCI device.

Serial number.

PCI slot number in the PCI bus.

Subsystem id

Subsystem vendor id

Version 3.39-3922

:ush: This is a USB device.

:vendor-id=int: Vendor id

:vpd-bo=string: Bitrate offset (from Vital Product Data area)
:vpd-cl=string: Customer id (from Vital Product Data area)
:vpd-ec=string: Engineering change level (from Vital Product Data area)
:vpd-id=string: Device description (from Vital Product Data area)
'vpd-mn=string: Manufacture id (from Vital Product Data area)
:vpd-pd=string: Production date (from Vital Product Data area)
:vpd-pn=string: Part number (from Vital Product Data area)
:vpd-sn=string: Serial number (from Vital Product Data area)
‘vpd-xt=string: Crystal stability (from Vital Product Data area)

Normalized channel characteristics

The characteristics in channel: lines are:

:access-downconverted:
:adjust-level:

:asi:

:asi-raw-10bit:

:atsc:

-bidir:

:channel=int:
:channel-modelling:
:cmmb:

:dedicated-clock-input:

:dedicated-clock-input-ratio:

.device=int:

-diversity:

72

Access to downconverted signal.

Adjustable level

This is a DVB/ASI port.

Raw 10-bit ASI mode available.

ATSC modulator.

This is a bidirectional port.

Channel index inside device.

Channel modelling available.

CMMB modulator.

Dedicated clock input available.

Dedicated clock input available, can be divided by providing a ratio.
Device index of the device containing the channel.

Diversity mode available.

Version 3.39-3922

:double-buffer:
:dtmb:

:dvb-c:
:dvb-c2:
:dvb-raw-10bit:
:dvb-s:
:dvb-s2:
:dvb-t:

:dvb-t2:
:dvb-t2-mi:
‘failsafe:
;if-output:
lip=string:
sio-clock-select:
;io-config:
sio-rate-select:
;ig-output:
:ig-samples:
sisdb-s:
lisdb-t:

:Iband:
‘lock-io-rate:
:loop-through:
:lvds1:

:lvds2:

Ivttl:
‘mac=string:
:modulator:
‘port=int:
:gam:

:gam-a:
:qam-b:
:gam-c:
:shared-input:
:sdi:

:sdi-time-stamp:

:sdi-time-stamp-64:

This is a double-buffered device.
DTMB modulator.

DVB-C modulator.

DVB-C2 modulator.

DVB 10-bit raw mode available.
DVB-S modulator.

DVB-S2 modulator.

DVB-T modulator.

DVB-T2 modulator.

DVB-T2-MI modulator.

Failsafe

IF output

IP address

1/0 clock selection available.

1/0 standard and mode configuration available.

TS rate clock selection available.
Digital 1Q output.

Direct I/Q samples available.
ISDB-S modulator.

ISDB-T modulator.

L-Band

Lock output to input TS rate available.

Loop-through available.
SPI LVDS1 available.

SPI LVDS2 available.

SPI LVTTL available.

MAC address

This is a modulator port.
Port number.

QAM modulator.

QAM-A (DVB-C) modulator.
QAM-B (USA) modulator.
QAM-C (Japan) modulator.
Shared antenna input available.
This is an SDI port.

SDI frames time-stamping available.

SDI frames 64-bit time-stamping available.

TSDuck Userls Guide

73

TSDuck Useris Guide

:snr-setting:

:spi:
:spi-external-clock:
:spi-fixed-clock:
:spi-serial-8-bit:
:spi-serial-10-bit:
‘transmit-on-time-stamp:
:transparent:
‘ts-over-ip:

:uhf:

:vhf:

:virtual-stream:

74

SNR setting available.

This is an SPI port.

SPI external clock available.
SPI fixed clock available.
SPI serial 8-bit available.

SPI serial 10-bit available.

Transmission on time-stamp available.

Transparent mode available.
This an IP port, for TS over IP.
UHF modulator.

VHF modulator.

Virtual stream channel.

Version 3.39-3922

Version 3.39-3922 TSDuck Userls Guide

3.10. tsdump

Dump TS packets

This utility dumps the contents of MPEG transport stream packets.

Usage

$ tsdump [options] [input-file ...]

Input files

Any number of MPEG transport stream files. If the parameter is omitted, is an empty string or a dash (-), the
standard input is used.

Note that if the option --raw is used, the input files can be any type of file, not necessarily MPEG transport stream
files.

Input file options

--byte-offset value

Start reading each file at the specified byte offset (default: 0).
This option is allowed only if all input files are regular files.

-C
--c-style

Same as --raw-dump (no interpretation of packets) but dump the bytes in C-language style, e.g. 0x01, 0x02, instead
of 01 02. Useful to include tsdump output as data in a C or C++ source file.

-f name
--format name

Specify the format of the input transport stream. See section 2.1.2 for more details.

By default, the format of each input file is automatically detected and can be different from one file to another.
When the option --format is specified, all input files must have the same format.

This option is ignored with --raw-file , the complete raw structure of the file is dumped.

-m value
--max-packets value

Maximum number of packets to dump per file.
--no-pager

Do not send output through a pager process. By default, if the output device is a terminal, the output is paged.
See section 3.1.4 for more details.

--packet-offset value
Start reading each file at the specified TS packet (default: 0).
This option is allowed only if all input files are regular files.

-r
--raw-file

Raw dump of file, do not interpret as TS packets. With this option, tsdumpsimply acts as a hexa / ASCII file dumper.
Packet dump options
--adaptation-field

Include formatting of the adaptation field.

75

TSDuck Useris Guide Version 3.39-3922
-a

--ascii

Include ASCII dump in addition to hexadecimal.

-b
--binary

Include binary dump in addition to hexadecimal.

-h
--headers-only

Dump packet headers only, not payload.

-l
--log

Display a short one-line log of each packet instead of full dump.
--log-size value

With option --log , specify how many bytes are displayed in each packet.
The default is 188 bytes (complete packet).

-n
--nibble

Same as --binary but add separator between 4-bit nibbles.
--no-headers
Do not display packet header information.

-0
--offset

Display offset from start of packet with hexadecimal dump.
--payload
Hexadecimal dump of TS payload only, skip TS header.

-p pidl[-pid2]
--pid pid1[-pid2]

Dump only packets with these PID values. Several --pid options may be specified.

By default, all packets are displayed.

UDP reception options

The command tsdumpcan also be used to dump UDP datagrams. This behavior is triggered by the option --ip-udp .
With this option, no input file shall be specified. The received UDP datagrams are not expected to contain TS
packets and --raw-file is implicit.

This option is used to dump raw UDP datagrams. It is typically used for debug purpose on
UDP networking. Do not use this option to dump TS packets from an IP-TV stream. Use tsp
with input plugin ip and plugin dump

The options which are described in this section apply only when --ip-udp is used.

--buffer-size value

Specify the UDP socket receive buffer size in bytes (socket option).

--default-interface

Let the system find the appropriate local interface on which to listen. By default, listen on all local interfaces.

--disable-multicast-loop

76

Version 3.39-3922 TSDuck Userls Guide

Disable multicast loopback.

By default, incoming multicast packets are looped back on local interfaces, if an application sends packets to the
same group from the same system. This option disables this.

Warning: On input sockets, this option is effective only on Windows systems. On UNIX systems (Linux, macOS,
BSD), this option applies only to output sockets.

--first-source

Filter UDP packets based on the source address. Use the sender address of the first received packet as only
allowed source.

This option is useful when several sources send packets to the same destination address and port. Accepting all
packets could result in a corrupted stream and only one sender shall be accepted.

To allow a more precise selection of the sender, use option --source . Options --first-source and --source are
mutually exclusive.

--ip-udp [[source@]address:]port

Specify that tsdumpshall dump raw UDP datagrams, not TS packets from transport stream files. The port part is
mandatory and specifies the UDP port to listen on. The address part is optional. It specifies an IP multicast
address to listen on. It can be also a host name that translates to a multicast address. If the address is not
specified, the plugin simply listens on the specified local port and receives the packets which are sent to one of
the local (unicast) IP addresses of the system.

An optional source address can be specified as source@address:port in the case of source-specific multicast (SSM).
--local-address address

Specify the IP address of the local interface on which to listen. It can be also a host name that translates to a local
address. By default, listen on all local interfaces.

--no-reuse-port
Disable the reuse port socket option. Do not use unless completely necessary.
--receive-timeout value

Specify the UDP reception timeout in milliseconds. This timeout applies to each receive operation, individually. By
default, receive operations wait for data, possibly forever.

--reuse-port
Set the reuse port socket option. This is now enabled by default, the option is present for legacy only.
--source address[:port]

Filter UDP packets based on the specified source address. This option is useful when several sources send packets
to the same destination address and port. Accepting all packets could result in a corrupted stream and only one
sender shall be accepted.

Options --first-source and --source are mutually exclusive.
--ssm

This option forces the usage of source-specific multicast (SSM) using the source address which is specified by the
option --source . Without --ssm, standard ("any-source") multicast is used and the option --source is used to filter
incoming packets.

The --ssm option is implicit when the classical SSM syntax source@address:portis used.
Generic common command options

The following options are implicitly defined in all commands.
--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).

77

TSDuck Useris Guide

--help

Display the command help text.

--verbose
Produce verbose messages.
--version

Display the version number.

78

Version 3.39-3922

Version 3.39-3922 TSDuck Userls Guide

3.11. tsecmg

Minimal generic DVB SimulCrypt-compliant ECMG

This utility behaves as a DVB SimulCrypt compliant ECMG. It can be used to debug system integration, replacing
any standard ECM Generator. Most DVB SimulCrypt parameters can be adjusted from the command line to test
the behaviour of an SCS.

This fake ECMG can be used with the tsp plugin named scrambler to build an end-to-end demo of a DVB
SimulCrypt system.

This fake ECMG accepts all Super_CAS_Id values. All ECM requests are instantaneously responded. The returned

ECM is a fake one. The fake ECMIis are TLV messages containing the access criteria and the control words as sent
by the SCS in clear format.

Warning: It is obvious that this ECMG shall never be used on a production system since it returns ECMis with clear
control words.

Usage

$ tsecmg [options]

Network options
--no-reuse-port
Disable the reuse port socket option. Do not use unless completely necessary.

-0
--once

Accept only one client and exit at the end of the session.

-p value
--port value

TCP port number of the ECMG server. Default: 2222.

DVB SimulCrypt options
--ac-delay-start value

This option sets the DVB SimulCrypt option AC_delay_start, in milliseconds. By default, use the same value as
--delay-start

--ac-delay-stop value

This option sets the DVB SimulCrypt option AC_delay_stop, in milliseconds. By default, use the same value as
--delay-stop .

--comp-time value

This option specifies the computation time of an ECM. The clear ECMis which are generated by this ECMG take no
time to generate. But, in order to emulate the behaviour of a real ECMG, this parameter forces a delay of the
specified duration before returning an ECM.

-c value
--cw-per-ecm value

Specify the required number of control words per ECM. This option sets the DVB SimulCrypt option CW_per_msg.
It also set lead_CW to CW_per_msg - 1. By default, use 2 control words per ECM, the current one and next one.

--delay-start value
This option sets the DVB SimulCrypt option delay_start, in milliseconds. Default: 200 ms.

--delay-stop value

79

TSDuck Useris Guide Version 3.39-3922

This option sets the DVB SimulCrypt option delay_stop, in milliseconds. Default: 200 ms.

--ecmg-scs-version value

Specifies the version of the ECMG" SCS DVB SimulCrypt protocol. Valid values are 2 and 3. The default is 2.
--max-comp-time value

Specify the maximum ECM computation time in milliseconds. This option sets the DVB SimulCrypt option
max_comp_time.

By default, use the value of --comp-time (which is zero by default) plus 100 milliseconds.

-r value
--repetition value

This option sets the DVB SimulCrypt option ECM rep_period, the requested repetition period of ECMis, in
milliseconds.

The default is 100 milliseconds.

-S
--section-mode

Return ECMis in section format. This option sets the DVB SimulCrypt parameter section_TSpkt_flag to zero.
By default, ECMis are returned in TS packet format.

--transition-delay-start value

This option sets the DVB SimulCrypt option transition_delay_start, in milliseconds. Default: -500 milliseconds.

--transition-delay-stop value

This option sets the DVB SimulCrypt option transition_delay_stop, in milliseconds. Default: 0 ms.

DVB SimulCrypt logging options
--log-data [=level]
Same as --log-protocol but applies to CW_provision and ECM_responsmessages only.

To debug the session management without being flooded by data messages, use --log-protocol=info --log
-data=debug

--log-protocol[=level]

Log all ECMG" SCS protocol messages using the specified level. If the option is not present, the messages are
logged at debuglevel only. If the option is present without value, the messages are logged at info level.

A level can be a numerical debug level or any of the following: fatal , severe, error , warning, info , verbose, debug
Asynchronous logging options

This application is multi-threaded. Each thread may log messages at any time. To avoid delaying an application
thread, the messages are displayed asynchronously in a low priority thread.

--log-message-count value

Specify the maximum number of buffered log messages. This value specifies the maximum number of buffered
log messages in memory, before being displayed. When too many messages are logged in a short period of time,
while plugins use all CPU power, the low-priority log thread has no resource. If it cannot display on time, the
buffered messages and extra messages are dropped. Increase this value if you think that too many messages are
dropped.

--synchronous-log

With this option, each logged message is guaranteed to be displayed, synchronously, without any loss of
message. The downside is that an application thread may be blocked for a short while when too many messages
are logged.

80

Version 3.39-3922 TSDuck Userls Guide

-t
--timed-log

Each logged message contains a time stamp.
Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

81

TSDuck Useris Guide Version 3.39-3922

3.12. tseit

Manipulate EITls using commands and scripts

This utility manipulates DVB Event Information Tables (EIT) using commands. Scripts can be used to reproduce
specific test cases.

This utility is typically reserved to offline testing. To generate and inject EITis in actual transport streams, use the
tsp plugin eitinject

Usage

$ tseit [options]

Options

-c 'string'
--command'string'

Specify an EIT manipulation command. See the list of available commands below.
Several --commandptions can be specified. All commands are executed in sequence.

The commands from --file options are executed first, then the --command options. If there is no --fle and no
--commangthe commands are read from the standard input.

-e
--exit-on-error

Stop executing commands when an error is encountered. By default, continue execution on error.

-f file-name
--file file-name

Specify a text file containing EIT manipulation commands to execute (command script). If the file name is a dash (-
), the standard input is used.

As usual in scripts, each text line is a command. Lines starting with # are considered as comments and ignored.
Lines ending with a backslash (\) continue on the next line.

Several --file options can be specified. All scripts are executed in sequence. The commands from --file options
are executed first, then the --commandptions. If there is no --file and no --commangdthe commands are read from
the standard input.

-i path
--input-directory path

Default directory of input files in EIT manipulation commands.

In all commands and scripts, each time an input file is specified without directory or with a relative path, this
default directory is used as base. It is consequently possible to write position-independent scripts and specify the
actual directory or base path in the tseit command.

-0 path
--output-directory path

Default directory of output files in EIT manipulation commands.

This is equivalent to option --input-directory , applied to output files.
Generic common command options

The following options are implicitly defined in all commands.
--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).

82

Version 3.39-3922

--help

TSDuck Userls Guide

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

List of EIT manipulation commands

dump

exit

generate

help

load

process

Dump the content of the EIT database.
Usage: dump

Exit tseit . Useful in interactive sessions.
Usage: exit

Generate TS packets, injecting ElTis from the event database according to the injection profile. Non-
EIT packets are null packets. The TS id, TS bitrate and initial date/time must have been specified first
(see command set).

Usage: generate [options] filename
filename Name of the output TS file to generate.
-b value Stop after generating the specified number of bytes.

--bytes value

-p value
--packets value

-s value
--seconds value

-u time
--until time

Stop after generating the specified number of TS packets.

Stop after generating the specified number of seconds of contents. The
duration is based on the TS bitrate.

Generate packets up to the specified date in the stream. The current date in
the stream is based on the initial date and the bitrate. Use
"year/month/day:hour:minute:second.millisecond" format.

List all internal commands. This command is useful in interactive session.

Usage:

Load events from a file.

Usage:

filename

help

load filename

A binary, XML or JSON file containing EIT sections. See the tsp plugin

eitinject for more details on event database files.

Process a transport stream file with EIT generation. The input file is read, EITis are injected using the
event database. The TS bitrate must have been specified first (see command set).

Usage: process [options] infile outfile

infile Name of the input TS file. Input ElTis are used to populate the event
database.

outfile Name of the output TS file to generate, after EIT injection.

-b value Stop after generating the specified number of bytes.

--bytes value

-i
--infinite

Repeat the input file infinitely.

83

TSDuck Useris Guide

quit

reset

save

set

84

-p value
--packets value

-r value
--repeat value

-s value
--seconds value

-0 value
--start-offset value

-u time
--until time

Stop after generating the specified number of TS packets.

Version 3.39-3922

Repeat the input file the specified number of times. By default, the input file

is read once.

Stop after generating the specified number of seconds of contents. The

duration is based on the TS bitrate.

Start reading the input file at the specified offset in bytes.

Generate packets up to the specified date in the stream. The current date in

the stream is based on the initial date and the bitrate. Use
"year/month/day:hour:minute:second.millisecond" format.

Exit tseit . Useful in interactive sessions. Same as exit .

Usage:

quit

Reset the content of the event database.

Usage:

reset

Save all current EIT sections in a file.

Usage:

filename

save filename

Name of the output file receiving EIT sections in binary format.

Set EIT generation options.

Usage:

--actual

--actual-pf
--actual-schedule
--eit-bitrate value
--no-actual
--no-actual-pf
--no-actual-schedule
--no-other
--no-other-pf
--no-other-schedule
--no-pf
--no-schedule
--other

--other-pf
--other-schedule

--pf

--satellite

--schedule

set [options]

Enable the generation of all EIT actual.
Enable the generation of EIT p/f actual.
Enable the generation of EIT schedule actual.
Set the EIT maximum bitrate in bits/second.
Disable the generation of all EIT actual.

Disable the generation of EIT p/f actual.

Disable the generation of EIT schedule actual.

Disable the generation of all EIT other.
Disable the generation of EIT p/f other.
Disable the generation of EIT schedule other.
Disable the generation of all EIT p/f.

Disable the generation of all EIT schedule.
Enable the generation of all EIT other.
Enable the generation of EIT p/f other.
Enable the generation of EIT schedule other.

Enable the generation of all EIT p/f.

Use the EIT cycle profile for satellite and cable networks as specified in [ETSI-

101-211].

Enable the generation of all EIT schedule.

Version 3.39-3922

--terrestrial

--time time

--ts-bitrate

--ts-id

value

value

TSDuck Userls Guide

Use the EIT cycle profile for terrestrial networks as specified in [ETSI-101-
211].

Set the current date and time in the transport stream. Use
"year/month/day:hour:minute:second.millisecond" format.

Set the transport stream bitrate in bits/second.

Set the actual transport stream id.

85

TSDuck Useris Guide Version 3.39-3922

3.13. tsemmg

Minimal generic DVB SimulCrypt-compliant EMMG

This utility behaves as a DVB SimulCrypt compliant EMMG. It can be used to debug system integration, replacing
any standard EMM Generator. Most DVB SimulCrypt parameters can be adjusted from the command line to test
the behaviour of a MUX.

This fake EMMG can be used with the tsp plugin named datainject to build an end-to-end demo of a DVB
SimulCrypt system.

Usage

$ tsemmg[options] [section-file ...]

Parameters

The parameters are files containing sections in binary or XML format. Several files can be specified. All sections

are loaded and injected in the MUX using the EMMG/PDG" MUX protocol. The list of all sections from all files is
cycled as long as tsemmyg is running. The sections can be of any type, not only EMMis.

By default, when no input file is specified, this EMMG generates fake EMM sections of a fixed size and all payload
bytes contain the same value. The value of the fake EMM table_id and the value of the payload bytes are
incremented in each new section. See options --emm-size, --emm-min-table-id and --emm-max-table-id .

Options

-b value
--bandwidth value

Specify the bandwidth of the data which are sent to the MUX in kilobits per second. The default is 100 kb/s.
--bytes-per-send value

Specify the average size in bytes of each data provision. The exact value depends on sections and packets sizes.
Default: 500 bytes.

--channel-id value
This option sets the DVB SimulCrypt parameter data_channel_id. The default is 1.

-c value
--client-id value

This option sets the DVB SimulCrypt parameter client_id. The default is O.

For EMM injection, the most signification 16 bits shall be the CA_system_id of the corresponding CAS.
--cycles value

Inject the sections from the input files the specified number of times. By default, inject sections indefinitely.

-d value
--data-id value

This option sets the DVB SimulCrypt parameter data_id. The default is 0.

--emm-max-table-id value

Specify the maximum table id of the automatically generated fake EMMis. The default is Ox8F.
When generating fake EMMIs, the table ids are cycled from the minimum to the maximum value.
--emm-min-table-id value

Specify the minimum table id of the automatically generated fake EMMis. The default is 0x82.

--emm-size value

86

Version 3.39-3922 TSDuck Userls Guide

Specify the size in bytes of the automatically generated fake EMMis. The default is 100 bytes.

--emmg-mux-version value

Specify the version of the EMMG/PDG" MUX DVB SimulCrypt protocol. Valid values are 1 to 5. The default is 2.

-i
--ignore-allocated

Ignore the allocated bandwidth as returned by the MUX. Continue to send data at the planned bandwidth, even if
it is higher than the allocated bandwidth.

--max-bytes value
Stop after sending the specified number of bytes. By default, send data indefinitely.

-m address:port
--mux address:port

Specify the IP address (or host name) and TCP port of the MUX.
This is a required parameter, there is no default.
--requested-bandwidth value

This option sets the DVB SimulCrypt parameter bandwidth in the stream_BW_request message. The value is in
kilobits per second.

The default is the value of the --bandwidth option. Specifying distinct values for --bandwidth and --requested
-bandwidth can be used for testing the behavior of a MUX.

-S
--section-mode

Send EMMIis or data in section format. This option sets the DVB SimulCrypt parameter section_TSpkt_flag to zero.
By default, EMMis and data are sent in TS packet format.

--stream-id value
This option sets the DVB SimulCrypt parameter data_stream_id. The default is 1.

-t value
--type value

This option sets the DVB SimulCrypt parameter data_type. The default is 0 (EMM).
In addition to integer values, the following hames can be used: emn{0), private-data (1) and ecm(2).

-u [address:]port
--udp [address:]port

Specify that the data_provision messages shall be sent using UDP.

By default, the data_provision messages are sent over TCP using the same TCP connection as the management
commands.

If the IP address (or host name) is not specified, use the same IP address as the --mux option. The port number is
required, even if it is the same as the TCP port.

-w milliseconds
--udp-end-wait milliseconds

With --udp, specify the number of milliseconds to wait after the last data_provision message (UDP) and before the
stream_close_request message (TCP).

This can be necesssary to ensure that the stream_close_request is processed after the processing of the last
data_provision. The default is 100 ms.

DVB SimulCrypt logging options

--log-data [=level]

87

TSDuck Useris Guide Version 3.39-3922

Same as --log-protocol but applies to data_provision messages only.

To debug the session management without being flooded by data messages, use --log-protocol=info --log
-data=debug.

--log-protocol[=level]

Log all EMMG/PDG" MUX protocol messages using the specified level. If the option is not present, the messages
are logged at debuglevel only. If the option is present without value, the messages are logged at info level.

A level can be a numerical debug level or any of the following: fatal , severe, error , warning, info , verbose, debug
Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

88

Version 3.39-3922 TSDuck Userls Guide

3.14. tsfclean

Cleanup the structure and boundaries of a transport stream file

In its most general form, an MPEG transport stream file is just a set of TS packets. It can be a capture of a live
stream, in which case the file starts and ends at arbitrary points in an endless transmission.

However, when a media player manipulates stored contents, it expects the files to start with the actual beginning
of an audio/video content. When the file format is an MPEG transport stream, the player expects some
characteristics such as immediate identification of the services and PIDIs, initial intra video frame, etc. Not
matching these characteristics does not prevent the content from being rendered by the player but glitches are
usually present at startup.

The tsfclean command cleans up a TS file to make it more consistent for media players and other similar tools.
The following transformations are applied:

¥ The output file starts with the PAT, the CAT (if present on input), the SDT (if present on input) and the PMTIs of
all services. Thus, the player is aware of the exact structure of the TS before processing the first audio / video
data.

¥ EIT present/following for actual existing services are kept. All other ElTis are removed.

¥ All other PSI/SI (including NIT, BAT, TDT and other broadcast-related tables), all null packets and all orphan
PIDis are deleted.

¥ In each video PID, all packets preceding the first intra-frame are deleted. If no intra-frame can be found
(unknown video codec or scrambled contents), all packets preceding the first complete PES packet are
deleted.

¥ In each audio, subtitles or data component of the services, all packets preceding the first complete PES packet
or section are deleted.

If the input file contains several versions of a table (PAT, CAT, SDT or PMTIs), all successive versions are merged
into one single version of the table. Some players are known to read the first table of each kind only and are not
able to handle table updates as a TV receiver would do. Consequently, if a service or a component of a service
appears and disappears several times, it becomes in fact declared from the start to the end of the output file. If
incompatible non-cumulative changes are introduced in a table update, an error is reported.

Usage

$ tsfclean [options] file ...

File

MPEG transport stream input files to cleanup. All input files must be regular files (no pipe) since the processing is
done on two passes.

If more than one file is specified, the output name shall specify a directory.
Options

-0 path
--output path

Specify the output file or directory.

If the specified path is a directory, the output file is created in that directory, with the same base name as the
input file.

This is a mandatory parameter, there is no default.

If more than one input file is specified, the output name shall specify a directory.

89

TSDuck Useris Guide

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

90

Version 3.39-3922

Version 3.39-3922 TSDuck Userls Guide

3.15. tsfixcc

Fix continuity counters

This utility fixes errors in the continuity counters (CC) in a transport stream file. If packets are missing (non
continuous CC), the CC in all subsequent packets in the affected PIDis are modified to remove the discontinuity.

If the file needs to be repeatedly played, tsfixcc can also add empty packets at the end of the file to fill the
discontinuities between the end and the beginning of the file when the playback wraps to the beginning.

Warning: Make sure that tsfixcc is really the right tool for what you want to do. tsfixcc can only fix the
continuity counters. If the input file is corrupted with missing packets, tsfxcc cannot restore the content of the
missing packets. Non-contiguous continuity counters are here to inform the video player that TS packets are
missing and the PES content is probably corrupted. If you use tsfixcc , the continuity counters will become
continuous again but the PES content remains corrupted because some binary data are still missing. The
difference is that the media player will not be informed that the PES content is corrupted. Make sure that this is
what you want to do.

Usage

$ tsfixcc [options] file

File
MPEG transport stream. Must be a binary stream of 188-byte packets.

This file must be a regular file (cannot be a pipe). It is open in read/write mode and is directly updated.
Options

-C
--circular

Enforce continuity when the file is played repeatedly. Add empty packets, if necessary, on each PID so that the
continuity is preserved between end and beginning of file.

Note, however, that this method is not compliant with the MPEG-2 Transport Stream standard as defined in [ISO-
13818-1]. The standard specifies that the continuity counter shall not be incremented on packets without payload.

-n
--no-action

Display what should be performed but do not modify the file.
--no-replicate-duplicated

Two successive packets in the same PID are considered as duplicated if they have the same continuity counter and
same content (except PCR, if any).

By default, duplicated input packets are replicated as duplicated on output (the corresponding output packets
have the same continuity counters).

When this option is specified, the input packets are not considered as duplicated and the output packets receive
individually incremented countinuity counters.

Generic common command options

The following options are implicitly defined in all commands.
--debug[=N]
Produce verbose debug output. Specify an optional debug level N (1 by default).

--help

91

TSDuck Useris Guide

Display the command help text.

--verbose
Produce verbose messages.
--version

Display the version number.

92

Version 3.39-3922

Version 3.39-3922 TSDuck Userls Guide

3.16. tsftrunc

Transport stream file truncation
This utility truncates a captured transport stream file to remove trailing incomplete packets.

See also the utility tsresync for a more powerful way to recover corrupted transport stream files.

Usage

$ tsftrunc [options] file ...

Files
MPEG transport stream files. They must be binary streams of 188-byte packets.

The files must be regular files (cannot be pipes). They are open in read/write mode and are directly updated.

Options

-b value
--byte value

Truncate the file at the next packet boundary after the specified size in bytes. Mutually exclusive with --packet .

-n
--noaction

Do not perform truncation, check mode only.

-p value
--packet value

Index of first packet to truncate. If unspecified, all complete packets are kept in the file. Extraneous bytes at end of
file (after last multiple of 188 bytes) are truncated.

-s value
--size-of-packet value

Specify the TS packet size in bytes. The default is 188 bytes.

Alternate packet sizes are useful for M2TS or other TS file formats.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

93

TSDuck Useris Guide Version 3.39-3922

3.17. tsfuzz

Introduce random errors in transport stream files

This utility randomly corrupts transport stream files, typically to perform fuzzing attacks on media tools or
receiver equipment.

The same effect can be obtained in transport stream processing pipeline using the tsp plugin fuzz.

Usage

$ tsfuzz [options] file ...

File
MPEG transport stream input files to corrupt.

If more than one file is specified, the output name shall specify a directory.

General options

-0 path
--output path

Specify the output file or directory. If the specified path is a directory, the output file is created in that directory,
with the same base name as the input file.

This is a mandatory parameter, there is no default.

If more than one input file is specified, the output name shall specify a directory.
Fuzzing options
These options are identical in the command tsfuzz and the tsp plugin fuzz.

-c value
--corrupt-probability value

Probability to corrupt a byte in the transport stream. The default is zero, meaning no corruption.
The value must be a fraction, e.g. 1/20, 1/1000, 3/20000, etc.

-p pidl[-pid2]
--pid pid1[-pid2]

PID filter: corrupt packets with these PID values only.

Several --pid options may be specified. By default, without --pid option, all PIDis are eligible for random
corruption.

-s hexa-data
--seed hexa-data

Initial seed for the pseudo-random number generator.
Specify hexadecimal data. The size is not limited but at least 32 bytes are recommended.

Using the same seed on the same TS file will result in exactly the same corruptions. Without this parameter, a
random seed is used, and the corruptions cannot be identically reproduced.

--sync-byte
May corrupt the 0x47 sync byte in TS packets. This may invalidate the synchronization of the transport stream.

By default, sync bytes are preserved.

Generic common command options

94

Version 3.39-3922 TSDuck Userls Guide

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

95

TSDuck Useris Guide Version 3.39-3922

3.18. tsgenecm

Generate one ECM using any DVB SimulCrypt-compliant ECMG

This command connects to a DVB SimulCrypt compliant ECMG and requests the generation of one ECM.
Restriction

The target ECMG shall support current or current/next control words in ECM, meaning CW_per_msg = 1 or 2 and
lead CW=0or 1.

Usage

$ tsgenecm [options] output-file

Output file

Name of the binary output section file which receives the generated ECM. If the specified name is "-", the standard
output is used.

ECM content options
--cp-number value
Crypto-period number (default: 0).

-c hexa-digits
--cw-current hexa-digits

Current control word (required). The value must be a suite of hexadecimal digits.

-n hexa-digits
--cw-next hexa-digits

Next control word (optional). The value must be a suite of hexadecimal digits.

ECMG client options

-a hexa-digits
--access-criteria hexa-digits

Specifies the access criteria for the service as sent to the ECMG. The value must be a suite of hexadecimal digits.
--channel-id value
Specifies the DVB SimulCrypt ECM_channel_id for the ECMG (default: 1).

-d seconds
--cp-duration seconds

Specifies the crypto-period duration in seconds (default: 10 seconds).

- value
--ecm-id value

Specifies the DVB SimulCrypt ECM_id for the ECMG (default: 1).

-e host:port
--ecmg host:port

Specify an ECM Generator host name (or IP address) and TCP port.

-v value
--ecmg-scs-version value

Specifies the version of the ECMG" SCS DVB SimulCrypt protocol. Valid values are 2 and 3. The default is 2.

--stream-id value

96

Version 3.39-3922 TSDuck Userls Guide

Specifies the DVB SimulCrypt ECM_stream_id for the ECMG (default: 1).

-s value
--super-cas-id value

Specify the DVB SimulCrypt Super_CAS_Id. This is required when --ecmg is specified.

DVB SimulCrypt logging options
--log-data [=level]
Same as --log-protocol but applies to CW_provision and ECM_responsmessages only.

To debug the session management without being flooded by data messages, use --log-protocol=info --log
-data=debug

--log-protocol[=level]

Log all ECMG" SCS protocol messages using the specified level. If the option is not present, the messages are
logged at debuglevel only. If the option is present without value, the messages are logged at info level.

A level can be a numerical debug level or any of the following: fatal , severe, error , warning, info , verbose, debug

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

97

TSDuck Useris Guide Version 3.39-3922

3.19. tshides

List HiDes modulator devices

This utility lists HiDes modulator devices and their characteristics.
Restrictions

This command is available on Linux and Windows only. There is no HiDes device drivers on macOS or BSD
systems.

Usage

$ tshides [options]

Options

-a value
--adapter value

Specify the HiDes adapter number to list. By default, list all HiDes devices.
Use --adapter or --device but not both.

-b value
--bandwidth value

Specify the bandwidth in Hz with --gain-range . The default is 8 MHz.

For compatibility with old versions, "low" values (below 1000) are interpreted in MHz. This means that values 8 and
8,000,000 are identical. Both mean 8 MHz.

-C
--count

Only display the number of devices, not their names or characteristics.

-d "name"
--device "name"

Specify the HiDes device name to list. By default, list all HiDes devices.
Use --adapter or --device but not both.

-f value
--frequency value

Frequency, in Hz, of the output carrier with --gain-range . The default is the first UHF channel.

-9
--gain-range

Display the allowed range of output gain for the specified device.

Usually, the allowed range of gain depends on the frequency and the bandwidth. This is why the gain range is not
displayed with the other characteristics. Use the options --frequency and --bandwidth to display the
corresponding gain range.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

98

Version 3.39-3922

--verbose

Produce verbose messages.

--version

Display the version number.

TSDuck Userls Guide

99

TSDuck Useris Guide Version 3.39-3922

3.20. tslatencymonitor

Monitor latency between two TS input sources

This utility uses the same input plugins as tsp or tsswitch to monitor the latency between these input sources.

Usage

$ tslatencymonitor [options] \
E -l input-name-1 [input-options] \
E -l input-name-2 [input-options]

Options

-b seconds
--buffer-time seconds

Specify the buffer time of timing data list in seconds. By default, the buffer time is 1 second.

-l
--list-plugins

List all available plugins.

-0 filename
--output-file filename

Output file name for CSV reporting (standard error by default).
--output-interval seconds

Specify the time interval between each output in seconds. The default is 1 second.

Asynchronous logging options

This application is multi-threaded. Each thread may log messages at any time. To avoid delaying an application
thread, the messages are displayed asynchronously in a low priority thread.

--log-message-count value

Specify the maximum number of buffered log messages. This value specifies the maximum number of buffered
log messages in memory, before being displayed. When too many messages are logged in a short period of time,
while plugins use all CPU power, the low-priority log thread has no resource. If it cannot display on time, the
buffered messages and extra messages are dropped. Increase this value if you think that too many messages are
dropped.

--synchronous-log

With this option, each logged message is guaranteed to be displayed, synchronously, without any loss of
message. The downside is that an application thread may be blocked for a short while when too many messages
are logged.

-t
--timed-log

Each logged message contains a time stamp.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

100

Version 3.39-3922

--verbose

Produce verbose messages.

--version

Display the version number.

TSDuck Userls Guide

101

TSDuck Useris Guide Version 3.39-3922

3.21. tslsdvb

List DVB, ATSC, ISDB tuner receiver devices

This utility lists the physical tuner receiver devices in the system with their characteristics. Despite the legacy dvb
name, all tuner devices are listed, DVB, ISDB or ATSC, terrestrial, satellite or cable.

This command lists physical devices only. It does not list tuner emulators (see section 7.1.4).

Usage

$ tslsdvb [options]

Options

-a N _
--adapter _N

Specify the Nth tuner device in the system, the first index being zero. This option can be used instead of device
name.

On Linux systems, this means /dev/dvb/adapterN .

-d "name"
--device-name "name"

Specify the name of the DVB receiver device to use. The syntax of the device name depends on the operating
system. See section 7.1.3 for more details on receiver devices haming.

By default, when no device name or adapter is specified, tslsdvb lists all available receiver devices.

-e
--extended-info

Display extended information.

This option comes in addition to --verbose to display extremely verbose information about a device such as the
associated DirectShow graph on Windows.

Windows-specific options:

-l
--list-devices

Get a list of all tuner and receiver DirectShow filters, equivalent to --test list-devices
--receiver-name "name"
Specify the name of the DirectShow receiver filter to use.

By default, first try a direct connection from the tuner filter to the rest of the graph. Then, try all receiver filters
and concatenate them all.

This option is used only when a specific device name or adapter number is specified. It is ignored when all devices
are listed since distinct tuner filters may need distinct receiver filters.

-t name
--test name

Run a specific DirectShow test. Produce a very verbose output, for debug only. The names of the available tests
are listed below.

none Do not run any test. This is the default.

list-devices Get a short list of all tuner and receiver DirectShow filters.

102

Version 3.39-3922 TSDuck Userls Guide

enumerate-devices Enumerate all DirectShow devices which are used with DVB tuners. This test is useful to
detect all devices which may not be recognized as valid tuners by TSDuck.

tuning-spaces List all DirectShow tuning spaces which are installed in the system and their compatibility
with the various network providers.

bda-tuners List all BDA tuners and their compatibility with the various predefined "network provider"
filters.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

103

TSDuck Useris Guide Version 3.39-3922

3.22. tsp

Transport stream processor
The transport stream processor is a general-purpose packet processing framework.

It receives an MPEG Transport Stream from a user-specified input plugin, applies MPEG packet processing
through several user-specified packet processor plugins, and sends the processed stream to a user-specified
output plugin.

All input, packet processing, and output plugins are shared libraries (.so files on Linux, .dylib on macOS, .dll on
Windows).

The following figure illustrates the structure of a tsp process using three packet processing plugins.

r

tsp process

4 4 4 7 §

packet packet packet
processing processing processing
plugin 1 plugin 2 plugin 3

Figure 2. Transport stream processor diagram

This section describes the general syntax and usage of the tsp command. All plugins are documented in detail, in

alphabetical order, in chapter 4. The section 5.2 gives a few examples of tsp commands, both simple and complex
examples.

Usage
The general syntax of the tsp command is the following:
tsp [tsp-options] \

[-I input-name [input-options]] \

[-P processor-name [processor-options]] ... \
[-O output-name [output-options]]

m I M €3

All tsp-options must be placed on the command line before the input, packet processing and output plugin
specifications. There must be at most one input and one output plugin. There may be any number of packet
processing plugins.

On the command line, the order of the packet processing plugins is significant: the TS packets are passed from
one processor to the other in this order. The input and output plugin, however, can be located anywhere on the
command line. They are implicitly used as first and last plugin in the chain, respectively.

Offline and real-time defaults

There are two main classes of usage for tsp, offline and real-time processing. Offline processing works on static
data such as transport stream files without specific timing constraints. Real-time processing applies to streaming
devices such as tuners, Dektec devices or IP streams.

In the tsp command and in many plugins, some command line options affect tuning and performances. Roughly,
we have to find a balance between throughput and latency.

¥ To get a higher throughput, we must minimize the data copy and thread context switching operations. This is
achieved using larger buffer sizes and letting plugins work on larger amounts of TS packets. This requires less

104

Version 3.39-3922 TSDuck Userls Guide

CPU and provides better overall performances. But this also has the side effect of increasing the latency.

¥ To get a lower latency, we must basically do the opposite: work on smaller data chunks, pass data faster
(more frequently) from plugin to plugin. The drawback is an increase of CPU requirement.

There is no unique choice. When working on offline files, increasing the throughput and reducing the CPU load is
the right choice. But for streaming and real-time processing, reducing the latency is the priority.

To optimize the offline or real-time processing, many tuning options can be adjusted. While fine tuning is
sometimes useful, the user mainly needs two sets of default options: offline or real-time.

By default, tsp and all plugins use the offline defaults, the tuning options which give good performances at the
expense of a higher latency.

The real-time defaults are used without having to specify all individual options in two cases:
¥ The option -r or --realtime is specified in the tsp command line.
¥ At least one plugin in the chain is designed to work in real-time.
In these two cases, tsp and all plugins use their real-time defaults (unless, of course, options are individually set).

The second condition, "designed to work in real-time", is an intrinsic property of a plugin. Examples of "real-time"
plugins include dvb, dektec, ip, play or regulate . These plugins are somehow designed to work on real-time
streams. Their simple presence in the tsp command is sufficient to trigger the use of real-time defaults for all
plugins. It is still possible to force the use of offline defaults using the tsp option --realtime=off , even if a real-
time plugin is present.

Rendering speed and transmission speed

With tsp, a stream has a rendering speed (the speed of the audio / video) and a transmission speed (the speed at
which packets go through tsp).

As a general rule, the word bitrate refers to the rendering speed. So, when a plugin inserts data with a "bitrate of
100 kb/s" for instance, this means that the data will be received at this bitrate when the transport stream is played
in real time (independently of the file processing speed, if the data insertion was previously performed on an
offline file).

It is important to understand the differences between the two. Real-time streams, from broadcast or multicast,
have identical transmission and rendering speeds because they are transmitted to watch TV. Files, on the other
hand, have a very high transmission speed, typically the I/0 speed of the disk, maybe 1 Gb/s or more on SSD.

Some plugins explicitly manipulate the rendering or transmission speed. The plugin pcrbitrate , for instance, is
designed to evaluate the rendering speed based on embedded time stamps in the stream. The plugin regulate ,
on the other hand, is designed to alter the transmission speed.

Letls review some examples of where these plugins should be used.

Consider that you have recorded a 6 Mb/s single program transport stream, and you want to send it through
UDP/IP to a remote media player. Using tsp -I file , you read it and send it to -O ip . The effective reading speed
of the file will be 500 M/b for instance. So, on a gigabit network, you send a 6 Mb/s video stream at 1 Gbh/s, 166
times faster as it should be. Thus, a 15 minute video is received in 5 seconds and the player displays almost
nothing. In this case, you must use the plugin regulate between -l fle and -O ip . The plugin acts as a bottleneck
and lets packets flow out at 6 Mb/s only.

But, when the source has the same transmission and rendering speeds (DVB tuner, IP source), the plugin regulate
is useless. At best, it does nothing. At worst, it introduces undesirable artifacts. There are also cases where the
transmission speed regulation is done automatically. If the media player is a local application such as VLC and is
started using -O play , tsp communicates with the player through a pipe. A pipe is a self-regulated communication
mechanism. So, even if the input is a disk file with a high reading speed, using regulate is not necessary because
the same role is played here by the pipe. The difference with the previous example is that UDP/IP is not a
regulated communication channel, unlike pipes and TCP/IP.

105

TSDuck Useris Guide Version 3.39-3922

Bitrate propagation

At any point in the chain, all plugins have some knowledge of the transport stream bitrate or rendering speed.
Some plugins use that bitrate information, some others donit. The plugin regulate is a typical example. It uses the
rendering speed as information to lower the transmission speed. As a general rule, tsp collects the input bitrate,
either from the input plugin itself which extracts the bitrate from a hardware input device (this is the case for ASI
cards for instance) or, if the input plugin is not able to report a bitrate, tsp automatically analyzes PCRis at the
output of the input plugin and computes the corresponding bitrate.

Then, the bitrate is transmitted from plugin to plugin.

Some plugins may inadvertently propagate incorrect bitrates while some plugins may force a (correct)
recomputation of the bitrate. To illustrate the first case, consider -I file E -P zap E using sample bitrate
values. You read a complete 36 Mb/s input file and tsp evaluates this bitrate. Then, -P zap extracts a 4 Mb/s
service and removes everything else. But it does not recompute the transport stream bitrate. So, the propagated
bitrate information is still 36 Mb/s. If this information is not used downstream in other plugins, we donit care. But
if we use the bitrate information in -P regulate -O ip ~ for instance, we will regulate at 36 Mb/s a stream which
should be played at 4 Mb/s. This is why, in specific situations like this, we need to recompute the bitrate using -P
pcrbitrate before -P regulate .

Input timestamps

For each input packet, an input timestamp is collected. When the source can provide its own timestamps (RTP, SRT,
M2TS file), this value is used. Otherwise, tsp uses the system time after the input plugin returns a bulk of packets.
When an input plugin is able to generate its own input timestamps, its documentation describes how this is
accomplished.

The input timestamps are propagated all along the chain of plugins. Some plugins may use them. For instance:
¥ The plugin pcrverify can use them as time reference.

¥ The output plugin file uses them to create files in M2TS format.
Modifying, inserting and deleting packets

In the complete chain of processing, between the input and the output plugin, each TS packet goes through all
packet processing plugins, one after the other, in the order of the command line.

In fact, a TS packet never moves. It is loaded in a large circular buffer and stays there. Each
plugin uses a sliding window over the circular buffer and inspects or modifies packets without
moving them.

A packet processing plugin may read, modify or delete existing packets. But it cannot add new packets.
Roughly, each packet processing plugin has one of the following functions (or sometimes a combination of them):
¥ Analysis (read packets).
¥ Modification (modify existing packets).
¥ Removal (delete packets from the stream).
¥ Data injection (add new packets).

The last case cannot be directly implemented. To achieve data injection, a plugin usually steals stuffing. Each time
a new TS packet needs to be injected, a plugin waits for the next null packet (i.e. a packet in PID Ox1FFF) and
replaces this null packet with the new packet to insert.

Consequently, the original amount of stuffing and its distribution in a stream directly influences the insertion
profile of new packets. Specifically, it is not possible to add more data than the stuffing bitrate. Moreover, precise
timing cannot be always achieved. When data need to be inserted at a given bitrate, the plugin tries to reach this
average bitrate (provided that there is enough stuffing) but cannot guarantee a precise constant inter-packet

106

Version 3.39-3922 TSDuck Userls Guide

distance.

In broadcast streams, where the modulation parameters impose a fixed bitrate, there is always some stuffing.
With variable bitrate, simple-program transport streams for IP, there can be no stuffing at all.

What are the options when the original amount of stuffing is not sufficient to insert the required data? It depends
on the requirements on the stream.

If the stream is targeted for broadcast, with a given target bitrate which cannot be changed, there is no other
solution than removing existing data to make room for the new data. Some plugins such as filter ~ or svremove
delete individual PIDis or complete services. By default, the deleted packets are simply removed from the stream.
But these plugins also have a --stuffing option which replaces deleted packets by stuffing instead of removing
them. Thus, you can increase the stuffing bitrate without altering the global transport stream bitrate.

If there is no requirement on the global bitrate, it is possible to insert artificial stuffing at input level using the
global tsp option --add-input-stuffing . The option adds a given number of null packets after a given number of
input packets (for instance, add 1 null packet every 15 input packets). The parameters influence the amount and
distribution of the artificial stuffing. Do not be afraid of inserting too much stuffing. It is always possible to
remove the stuffing in excess using -P filter -n -p Ox1FFF at the end of the chain, after all injection plugins.

Merging and forking

As indicated above, tsp processes one single transport stream. However, specific plugins such as mergeand fork
respectively combine and duplicate transport streams. They are designed to route transport streams from and to
other applications. When the "other" application is another instance of tsp, we can create complex processing
graphs.

This is illustrated in the diagram below.

-0

input plugin merge merge plugin fork output

tsp tsp
[)

Figure 3. Merging and forking transport streams

Joint termination
Some plugins have termination conditions.

For instance, the plugin until passes packets until some specified condition. The plugins muxand inject may
terminate tsp after completing the data insertion, etc.

Therefore, a plugin can decide to terminate tsp on its own. The termination is unconditional, regardless of the
state of the other plugins. Thus, if several plugins have termination conditions, tsp stops when the first plugin
decides to terminate. In other words, there is an or operator between the various termination conditions.

The idea behind joint termination is to terminate tsp when several plugins have jointly terminated their processing.

If several plugins have a joint termination condition (usually using the option --joint-termination), tsp stops when
the last plugin triggers the joint termination condition. In other words, there is an and operator between the
various joint termination conditions.

Additionally, the tsp option --ignore-joint-termination disables this behavior. When this options is used, all
plugins continue to pass packets as if some additional joint termination condition was still pending.

Packet labelling

107

TSDuck Useris Guide Version 3.39-3922

Transport streams packets may receive one or more label from any packet processing plugin. A label is an integer
value from 0 to 31, inclusive. A label remains attached to the packet all along the chain, from plugin to plugin.
Later, it is possible to select packets with a label value or invoke a specific plugin only on packets having a given
label.

The plugin filter has an option named --set-label to assign a label to the selected packets. Note that, with this
option, the plugin filter does not drop unselected packets; it keeps all packets but assigns the specified label to
the selected packets.

All packet processing plugins accept the option --only-label which selects only the packets with a given label.
Thus, only the packets with that label pass through the plugin. All other packets, without that label, are directly
passed to the next plugin in the chain.

The following example illustrates the usage of labels. The first three plugins select different kinds of packets and
assign a label value depending on the kind of packet. These filter plugins do not drop any packet, they just
assign labels to some of them. Later, three other plugins are applied only to one of these labels. In this example,
we consequently count packets with unit start indicator and scrambling control value 2 and 3, respectively.

$tsp -l ...\

E -P filter ~ --unit-start ~ --set-label 2 \

E -P filter ~ --scrambling 2 --set-label 10 \

E -P filter --scrambling 3 --set-label 11 \

E -P count --only-label 2 --total --tag unit \
E -P count --only-label 10 --total --tag scr2 \
E -P count --only-label 11 --total --tag scr3 \
E -O...

* count: unit: total: counted 5,311 packets out of 5,311
* count: scr2: total: counted 8,378 packets out of 8,378
* count: scr3: total: counted 7,439 packets out of 7,439

Global tsp options

These options apply to the execution of the tsp framework. They must be placed on the command line before any
plugin specification.

-a nullpkt/inpkt
--add-input-stuffing nullpkt/inpkt

Specify that nullpkt null TS packets must be automatically inserted after every inpkt input TS packets. Both
nullpkt and inpkt must be non-zero integer values. This option is useful to artificially increase the input bitrate by
adding stuffing.

Example: the option -a 14/24 adds 14 null packets every 24 input packets, effectively turning a 24 Mb/s input
stream (terrestrial) into a 38 Mb/s stream (satellite).

--add-start-stuffing count

Specify that count null TS packets must be automatically inserted at the start of the processing, before the first
packet coming from the input plugin.

--add-stop-stuffing count

Specify that count null TS packets must be automatically inserted at the end of the processing, after the last packet
coming from the input plugin.

-b value
--bitrate value

Specify the transport stream input bitrate, in bits/seconds. By default, the input bitrate is provided by the input
plugin or by analysis of the PCRIs at the beginning of the input stream. If no or not enough PCR are found, the DTS

from video PIDI(s are used.

108

Version 3.39-3922 TSDuck Userls Guide

See section 2.2 for more details on the representation of bitrates.

Use option --bitrate when you know precisely the input bitrate and you do not trust the input device, the PCRIs or
the DTS.

See also the plugin pcrbitrate for permanent recomputation of the bitrate based on PCRIis or DTS.
--bitrate-adjust-interval value

Specify the interval in seconds between bitrate adjustments, ie. when the output bitrate is adjusted to the input
one. The default is 5 seconds. Some output processors ignore this setting. Typically, ASI or modulator devices use
it, while file devices ignore it. This option is ignored if --bitrate is specified.

--buffer-size-mb value

Specify the global buffer size in mega-bytes. This is the size of the buffer between the input and output devices.
The default is 16 MB. Increasing the buffer size may improve the performance at the expense of increasing the
overall latency (implicit time-shifting).

The value (in mega-bytes) can be decimal, for instance --buffer-size-mb 0.5 , but note that there is no good
reason to decrease the buffer size below 1 MB.

See also the options --max-input-packets and --max-flushed-packets to adjust the latency without modifying the
global buffer size.

--final-wait milliseconds
Wait the specified number of milliseconds after the last input packet. Zero means wait forever.

-i
--ignore-joint-termination

Ignore all --joint-termination options in plugins. The plugins continue to pass packets as if some additional joint
termination condition was still pending.

See the description of joint termination above for more details.
--initial-input-packets value
Specify the number of packets to initially read in the buffer before starting the processing.

The initial load is used to evaluate the bitrate so that all subsequent plugins can have a valid global bitrate value
from the beginning. It is also used to make sure that the global buffer is optimally used.

The default initial load is half the size of the global buffer. For offline files and real-time devices with a sustained
bitrate, it is a good idea to keep the default value.

The side effect of waiting for a significant amount of initial packets before starting the processing is that, with very
low bitrates, tsp seems to do nothing until the global buffer is half full. The option --initial-input-packets is
used to adjust this effect when necessary.

The downside of using a lower initial buffer load is that some plugins may not be able to use a valid bitrate for the
initial part of the stream. Another downside is that the usage of the global buffer will probably be suboptimal and
may even starve, creating output glitches, depending on the processing time of the intermediate plugins.

-l
--list-plugins

List all available plugins.
--log-plugin-index

In log messages, add the plugin index to the plugin name. This can be useful if the same plugin is used several
times and all instances log many messages.

--max-flushed-packets value

Specify the maximum number of packets to be processed before flushing them to the next plugin or the output.
When the processing time is high and some packets are lost, try decreasing this value.

109

TSDuck Useris Guide Version 3.39-3922

The offline default is 10,000 packets. The real-time default is 1,000 packets.
--max-input-packets value
Specify the maximum number of packets to be received at a time from the input plugin.

By default, in offline mode, tsp reads as many packets as it can, depending on the free space in the buffer. The
real-time default is 1,000 packets.

--max-output-packets value
Specify the maximum number of packets to be sent at a time by the output plugin.

By default, tsp sends as many packets as available. This option is useful only when an output plugin or a specific
output device has problems with large output requests. This option forces multiple smaller send operations.

-r [keyword]
--realtime [=keyword]

Specifies if tsp and all plugins should use default values for real-time or offline processing.

By default, if any plugin prefers real-time, the real-time defaults are used. If no plugin prefers real-time, the offline
default are used.

If -r or --realtime is used alone, the real-time defaults are enforced. The explicit values no, false , off are used to
enforce the offline defaults and the explicit values yes, true , on are used to enforce the real-time defaults.

--receive-timeout milliseconds
Specify a timeout in milliseconds for all input operations.

Equivalent to the same --receive-timeout option in some input plugins. In practice, when an input plugin natively
supports a receive timeout, this global parameter is passed to the plugin. Otherwise, tsp handles the receive
timeout and tries to abort the stalled input operation in case of timeout.

By default, there is no input timeout.

Control commands options

It is possible to send commands to a running tsp process using the command tspcontrol . See the documentation
of this command for more details on control commands. The following options control how these control
commands are received.

--control-local address

With --control-port , specify the IP address of the local interface on which to listen for control commands. It can
be also a host name that translates to a local address. By default, listen on all local interfaces.

--control-port value

Specify the TCP port on which tsp listens for control commands. If unspecified, no control commands are
expected.

--control-reuse-port
With --control-port , set the reuse port socket option on the control TCP server port.

This option is not enabled by default to avoid accidentally running two identical tsp commands with the same
control port.

--control-source address

With --control-port , specify a remote IP address which is allowed to send control commands.
By default, as a security precaution, only the local host is allowed to connect.

Several --control-source options are allowed.

--control-timeout milliseconds

With --control-port , specify the reception timeout in milliseconds for control commands. The default timeout is

110

Version 3.39-3922 TSDuck Userls Guide

5000 ms.
Monitoring options

-nfilename]
--monitor [=filename]

Continuously monitor the system resources which are used by the application process. This includes CPU load,
virtual memory usage. Useful to verify the stability of the application or benchmarking the packet processing
performance.

The optional file is an XML monitoring configuration file. See section C.2, for more details on resource monitoring
configuration files.

Asynchronous logging options

This application is multi-threaded. Each thread may log messages at any time. To avoid delaying an application
thread, the messages are displayed asynchronously in a low priority thread.

--log-message-count value

Specify the maximum number of buffered log messages. This value specifies the maximum number of buffered
log messages in memory, before being displayed. When too many messages are logged in a short period of time,
while plugins use all CPU power, the low-priority log thread has no resource. If it cannot display on time, the
buffered messages and extra messages are dropped. Increase this value if you think that too many messages are
dropped.

--synchronous-log

With this option, each logged message is guaranteed to be displayed, synchronously, without any loss of
message. The downside is that an application thread may be blocked for a short while when too many messages
are logged.

-t
--timed-log

Each logged message contains a time stamp.

Default values for plugins options

The following options are commonly found in many different plugins. They typically influence the way the
signalization is interpreted or generated.

These options can also be specified at tsp level, before specifying any plugin. They have have no effect on the tsp
framework. They are only passed as initial default values for all plugins which accept the equivalent options.
Explicit options at plugin level take precedence over these global defaults.

--abnt

Assume that the transport stream is an ISDB one with ABNT-defined variants. See section 2.4.2 for more details.
--atsc

Assume that the transport stream is an ATSC one. See section 2.4.2 for more details.

--brazil

A synonym for --isdb --abnt --default-charset RAW-ISO-8859-15 --hf-band-region brazil --time-reference UTC-3
. This is a handy shortcut when working on South American ISDB-Tb transport streams. See section 2.4.2 and
section 2.5.2 for more details.

--conax

Interpret all EMMis and ECMis from unknown CAS as coming from Conax. Equivalent to --default-cas-id 0x0B0O
--default-cas-id value

Interpret all EMMis and ECMis from unknown CAS as coming from the specified CA_System_Id.

111

TSDuck Useris Guide Version 3.39-3922

By default, EMMis and ECMis are interpreted according to the CA_descriptor which references their PID. This

option is useful when analyzing partial transport streams without CAT or PMT to correctly identify the CA PIDIs.
--default-charset name

Default character set to use when interpreting strings from tables and descriptors. By default, the standard DVB
encoding is used. See section 2.5 for more details.

--default-pds value

Default DVB-defined private data specifier (PDS). See section 2.4.2 for more details.
--europe

A synonym for --default-charset ISO-8859-15 . See section 2.5 for more details.
--hf-band-region name

Specify the region for UHF/VHF band frequency layout. The default region is europe. Another default region may
be specified per user in the TSDuck configuration file. See section A.4 for more details.

--ignore-leap-seconds

Do not explicitly include leap seconds in some UTC computations. See section 2.4.2 for more details.

--irdeto

Interpret all EMMis and ECMis from unknown CAS as coming from Irdeto. Equivalent to --default-cas-id 0x0600
--isdb

Assume that the transport stream is an ISDB one. ISDB streams are normally automatically detected from their
signalization. This option is only useful when ISDB-related stuff are found in the TS before the first ISDB-specific
table. See section 2.4.2 for more details.

--japan

A synonym for --isdb --default-charset ARIB-STD-B24 --hf-band-region japan --time-reference JST . See section
2.4.2 and section 2.5.2 for more details.

--mediaguard

Interpret all EMMIis and ECMis from unknown CAS as coming from MediaGuard. Equivalent to --default-cas-id
0x0100

--nagravision

Interpret all EMMis and ECMis from unknown CAS as coming from NagraVision. Equivalent to --default-cas-id
0x1800

--nds

Interpret all EMMis and ECMis from unknown CAS as coming from Synamedia (formerly known as NDS).
Equivalent to --default-cas-id 0x0900

--philippines

A synonym for --isdb --abnt --default-charset RAW-UTF-8 --hf-band-region philippines --time-reference UTC+8 .
This is a handy shortcut when working on Philippines transport streams. See section 2.4.2 and section 2.5.2 for
more details.

--safeaccess

Interpret all EMMis and ECMis from unknown CAS as coming from SafeAccess. Equivalent to --default-cas-id
Ox4ADC

--time-reference name
Use a non-standard time reference in DVB or ISDB-defined SI. See section 2.4.2 for more details.
--usa

A synonym for --atsc --hf-band-region usa . This is a handy shortcut when working on North American transport

112

Version 3.39-3922 TSDuck Userls Guide

streams. See section 2.4.2 and section 2.5.2 for more details.
--viaccess

Interpret all EMMis and ECMis from unknown CAS as coming from Viaccess. Equivalent to --default-cas-id
0x0500

--widevine

Interpret all EMMis and ECMis from unknown CAS as coming from Widevine CAS. Equivalent to --default-cas-id
0x4AD4

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

Plugin activation options

-l name

Designate the shared library plugin for packet input. By default, read packets from standard input.
-O name

Designate the shared library plugin for packet output. By default, write packets to standard output.
-P name

Designate a shared library plugin for packet processing. Several packet processors are allowed. Each packet is
successively processed by each processor, in the order of the command line. By default, there is no processor and
the packets are directly passed from the input to the output.

The specified plugin name is used to locate a shared library for the plugin (.so file on Linux, .dylib on macQOS, .dll
on Windows). On Windows, usually, all plugins files are in the same directory as the tsp executable. More
generally, a plugin can be designated in a number of ways, in the following order. When a method fails, the next
one is attempted.

¥ If the plugin name is a complete path name, with a directory, this path name is used.
¥ Without directory in the plugin name, a list of directories is searched:

I If the environment TSPLUGINS_ PASIdefined, a list of directories is parsed. Directories are separated by a
semicolon ; on Windows and a colon : on UNIX systems (Linux, macOS, BSD).

I The same directory as the tsp executable file is used as last choice.
I In each of these directories, the file named tsplugin_name.so or .dylib or .dll is searched.
I If not found, the file nameand then name.soor .dylib or .dll is searched.

¥ If still not found, the standard algorithm of the operating system is applied to locate the shared library file,
using the specified name (on Linux, see the man page of dlopen(3) for more details).

The input-options , processor-options and output-options , as specified in the general syntax of the tsp command, are
specific to their corresponding plugin. All available plugins are documented in chapter 4.

113

TSDuck Useris Guide Version 3.39-3922

Common plugin options
All plugins accept the following common options:

--help

The plugin displays its syntax and exits.

This means that the following type of command can be used to display the help text for a specific plugin:

$ tsp {-I |-O]-P } name --help

114

Version 3.39-3922 TSDuck Userls Guide

3.23. tspacketize

Packetize PSI/SI tables in a transport stream PID

This utility packetizes PSI/SI tables in a transport stream PID.

Usage

$ tspacketize [options] [input-file[=rate]...]

Parameters
input-file[=rate]

Binary, XML or JSON files containing one or more sections or tables. By default, files with a name ending in .bin ,
xml or .json are automatically recognized. For other file names, explicitly specify --binary or --xml or --json .

If the file name is omitted, the standard input is used (binary by default, specify --xml or --json otherwise).

The reference source format is XML. JSON files are first translated to XML using the "automated XML-to-JSON
conversion" rules of TSDuck (see section 2.7.3) and then compiled to binary.

If different repetition rates are required for different files, a parameter can be filename=value where value is the
repetition rate in milliseconds for all sections in that file. For repetition rates to be effective, the bitrate of the
target PID must be specified, see option --bitrate

If an input file name starts with <?xm| it is considered as inline XML content Similarly, if an input file name starts
with { or [, it is considered as inline JSON content In these two cases, it is not possible to specify a specific
repetition rate for this XML or JSON content.

Options

--binary

Specify that all input files are binary, regardless of their file name.

-b value
--bitrate value

Specifies the bitrate (in bits/second) of the target PID.
See section 2.2 for more details on the representation of bitrates.

This information is used to schedule sections in the output list of packets when specific bitrates are specified for
sections. When no specific bitrate is specified for any input file, this option is ignored.

-C
--continuous

Continuous packetization. By default, generate one cycle of sections.

-f
--force-crc

Force recomputation of CRC32 in long sections. Ignore the CRC32 values in the input files. By default, the CRC32 of
every section is verified and sections with wrong CRC32 are rejected.

g
--json

Specify that all input files are JSON, regardless of their file name.

-0 file-name
--output file-name

Output file name for TS packets. By default, use standard output.

-p value

115

TSDuck Useris Guide Version 3.39-3922

--pid value
PID of the output TS packets. This is a required parameter, there is no default value.

-s
--stuffing

Insert stuffing at end of each section, up to the next TS packet boundary. By default, sections are packed and start
in the middle of a TS packet, after the previous section. Note, however, that section headers are never scattered
over a packet boundary.

-X
--xml

Specify that all input files are XML, regardless of their file name.
Sections files options

These options affect the way sections are loaded from binary, XML or JSON files. They are used in commands
tspacketize , tstabcomp, and plugin inject .

--eit-actual

With --eit-normalization , generate all EIT Actual. Same as --eit-actual-pf --eit-actual-schedule

--eit-actual-pf

With --eit-normalization , generate EIT p/f Actual. If no EIT selection option is specified, all EITis are generated.
--eit-actual-schedule

With --eit-normalization , generate EIT Schedule Actual. If no EIT selection option is specified, all ElTis are
generated.

--eit-base-date date

With --eit-normalization , use the specified date as reference for the allocation of the various EIT events in
sections and segments.

The date must be in the format "YYYY/MM/DD [hh:mm:ss]". If only the date is present, it is used as base for the
allocation of EIT schedule. If the time is also specified, it is the current time for the snapshot of EIT p/f. By default,
use the oldest date in all EIT sections as base date.

--eit-normalization
Reorganize all EIT sections according to the rules from [ETSI-101-211].

¥ EIT present/following: One single EIT p/f subtable is built per service. It is split in two sections, one for present
and one for following events.

¥ EIT schedule: All EIT schedule are kept but they are completely reorganized. All events are extracted and
spread over new EIT sections according to ETSI TS 101 211 rules.

If several files are specified, the reorganization of ElTis is performed inside each file independently. This is fine as
long as all EITis for a given service are in the same input file.

See also option --eit-base-date

--eit-other

With --eit-normalization , generate all EIT Other. Same as --eit-other-pf --eit-other-schedule

--eit-other-pf

With --eit-normalization , generate EIT p/f Other. If no EIT selection option is specified, all EITis are generated.
--eit-other-schedule

With --eit-normalization , generate EIT Schedule Other. If no EIT selection option is specified, all EITis are
generated.

--eit-pf

116

Version 3.39-3922 TSDuck Userls Guide

With --eit-normalization , generate all EIT p/f. Same as --eit-actual-pf --eit-other-pf

--eit-schedule

With --eit-normalization , generate all EIT Schedule. Same as --eit-actual-schedule --eit-other-schedule
--pack-and-flush

When loading a binary section file, pack incomplete tables, ignoring missing sections, and flush them. Sections
are renumbered to remove any hole between sections.

Use with care because this may create inconsistent tables.

Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.
--brazil

A synonym for --default-charset RAW-ISO-8859-15 . This is a handy shortcut when working on South American
ISDB-Tb transport streams. See section 2.4.2 and section 2.5.2 for more details.

--default-charset name

Default character set to use when interpreting strings from tables and descriptors. By default, the standard DVB
encoding is used. See section 2.5 for more details.

--europe

A synonym for --default-charset ISO-8859-15 . See section 2.5 for more details.

--japan

A synonym for --default-charset ARIB-STD-B24 . See section 2.4.2 and section 2.5.2 for more details.
--philippines

A synonym for --default-charset RAW-UTF-8 . This is a handy shortcut when working on Philippines transport
streams. See section 2.4.2 and section 2.5.2 for more details.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

117

TSDuck Useris Guide Version 3.39-3922

3.24. tspcap

Analyze pcap and pcap-ng files

This simple utility provides a summary of the content of pcap and pcap-ng files. These files contain network
packets, typically captured and saved by Wireshark.

The tspcap utility is not meant to replace Wireshark. It only computes global analysis data which are not otherwise
available in Wireshark, for instance the data bitrate over a range of packets in the file.

Wireshark is typically used to investigate issues on a network capture. Then, if some specific global analysis is
required, use tspcap.

See some usage examples in section 5.1.10.

Usage

$ tspcap [options] [input-file]

Parameters
input-file
Input file in pcap or pcap-ng format, typically as saved by Wireshark.

Use the standard input if no file name is specified.
Options

-d [address][:port]
--destination [address][:port]

Filter IPv4 packets based on the specified destination socket address. The optional port number is used for TCP
and UDP packets only. If the address part is omitted, all TCP or UDP packets with any destination address but with
that destination port number are used.

--dvb-simulcrypt
Dump the content of a session as DVB SimulCrypt protocol.

Without --udp, the first TCP session matching the --source and --destination options is selected. The content of
the session is interpreted as one of the TLV-based DVB SimulCrypt protocols and all messages are formatted.

With --udp, all packets matching the --source and --destination options are interpreted as EMMG/PDG" MUX
protocol (this is the only DVB SimulCrypt protocol which is based on UDP).

-e
--extract-tcp-stream

Extract the content of a TCP session as hexadecimal dump.
The two directions of the TCP session are dumped.
The first TCP session matching the --source and --destination options is selected.

-i micro-seconds
--interval micro-seconds

Print a summary of exchanged data by intervals of times in micro-seconds.
By default, print a summary of the file content.

-l
--list-streams

List all data streams in the file. A data streams is made of all packets from one source to one destination using one
protocol.

118

Version 3.39-3922 TSDuck Userls Guide

By default, print a summary of the file content.
--no-pager

Do not send output through a pager process. By default, if the output device is a terminal, the output is paged.
See section 3.1.4 for more details.

--others
Filter packets from "other" protocols, i.e. neither TCP nor UDP.

-0 file-name
--output-tcp-stream file-name

Extract the content of a TCP session and save it in the specified binary file.

The first TCP session matching the --source and --destination options is selected.

Unlike --extract-tcp-stream , only one side of the TCP session is saved, from --source to --destination
If the file name is "-", the standard output is used.

-s [address][:port]
--source [address][:port]

Filter IPv4 packets based on the specified source socket address.

The optional port number is used for TCP and UDP packets only. If the address part is omitted, all TCP or UDP
packets with any source address but with that source port number are used.

-t
--tcp

Filter TCP packets.

-u
--udp

Filter UDP packets.

Packet filtering options

--first-date date-time

Filter packets starting at the specified date. Use format YYYY/MM/DD:hh:mm:ss.mmm
--first-packet value

Filter packets starting at the specified number.

The packet numbering counts all captured packets from the beginning of the file, starting at 1. This is the same
value as seen on Wireshark in the leftmost column.

--first-timestamp micro-seconds

Filter packets starting at the specified timestamp in micro-seconds from the beginning of the capture. This is the
same value as seen on Wireshark in the "Time" column (in seconds).

--last-date date-time

Filter packets up to the specified date. Use format YYYY/MM/DD:hh:mm:ss.mmm
--last-packet value

Filter packets up to the specified number.

The packet numbering counts all captured packets from the beginning of the file, starting at 1. This is the same
value as seen on Wireshark in the leftmost column.

--last-timestamp micro-seconds

Filter packets up to the specified timestamp in micro-seconds from the beginning of the capture. This is the same
value as seen on Wireshark in the "Time" column (in seconds).

119

TSDuck Useris Guide Version 3.39-3922

--vlan-id value

Filter packets from the specified VLAN id.

This option can be specified multiple times. In that case, the values define the required nested VLAN ids, from the
outer to inner VLAN. If the stream contains even more inner VLANIs, they are all selected.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

120

Version 3.39-3922 TSDuck Userls Guide

3.25. tspcontrol

Send control commands to a running tsp process

This utility controls the execution of a running tsp process. The target tsp command shall listen to control
commands using the option --control-port (see the documentation of tsp).

Usage

$ tspcontrol [options] command.

Parameters
command E
The control command to send to the target tsp process. See the list of control commands below.

Note that everything after the control command name is considered as options and parameters of this control
command. The options of tspcontrol must be placed before the control command name.

Options

-t [address:]port
--tsp [address:]port

Specify the IP address (or host name) and port where the target tsp process expects control commands (tsp
option --control-port). If the IP address is omitted, the local host is used.

This is a required parameter, there is no default.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

List of control commands

exit Terminate the tsp process.
Usage: tspcontrol exit [options]
--abort Specify to immediately abort the tsp process. By default, this command notifies each

plugin to terminate and let the processing continue until the process naturally exits.

list List all running plugins. The listed plugin indexes can be used with other control commands such as
suspend resumeor restart .

Usage: tspcontrol list [options]
-V Produce verbose output.
--verbose

restart Restart a plugin with different parameters.

121

TSDuck Useris Guide Version 3.39-3922

Usage: tspcontrol restart [options] index [plugin-options E]

Parameters: Index of the plugin to restart, followed by the new plugin parameters to use.

-S Restart the plugin with the same options and parameters as the current ones. By
—-same default, when no plugin options are specified, restart with no option at all.

-V Produce verbose output.

--verbose

resume Resume a suspended plugin.

Usage: tspcontrol resume [options] index

Parameter: Index of the plugin to resume.

-V Produce verbose output.
--verbose

set-log Change the log level in the tsp process.
Usage: tspcontrol set-log level

Parameter: Specify a new logging level for the tsp process. It can be one of fatal , severe, error
warning, info , verbose, debugor a positive value for higher debug levels.

suspend Suspend a plugin. When a packet processing plugin is suspended, the TS packets are directly passed
from the previous to the next plugin, without going through the suspended one. When the output
plugin is suspended, the output packets are dropped. The input plugin cannot be suspended.

Usage: tspcontrol suspend [options] index
Parameters: Index of the plugin to suspend.

-V Produce verbose output.
--verbose

122

Version 3.39-3922 TSDuck Userls Guide

3.26. tspsi

Dump all PSI tables
This utility extracts all PSI tables (PAT, CAT, PMT, NIT, BAT, SDT) from a transport stream. The output is rather

primitive, but it exactly exhibits the structure of tables, sections and descriptors.

Usage

$ tspsi [options] [input-file]

Input file
MPEG transport stream, either a capture file or a pipe from a live stream (see option --format for binary formats).

If the parameter is omitted, is an empty string or a dash (-), the standard input is used.

General options

--format name

Specify the format of the input transport stream. See section 2.1.2 for more details.

--no-pager

Do not send output through a pager process. By default, if the output device is a terminal, the output is paged.
See section 3.1.4 for more details.

PSI selection and logging options

-a
--all-versions

Display all versions of PSI tables (need to read the complete transport stream). By default, display only the first
version of each PSI table and stop when all expected PSI are extracted.

--cat-only
Display only the CAT, ignore other PSI tables.

-C
--Clear

Indicate that this is a clear transport stream, without conditional access information. Useful to avoid further
reading the transport stream, waiting for a non-existent CAT.

-d
--dump

Dump all PSI sections.

--exclude-current

Exclude PSI tables with "current” indicator. This is rarely necessary. See also --include-next
--include-next

Include PSI tables with "next" indicator. By default, they are excluded.

-j file-name
--json-output file-name

Save the tables in JSON format in the specified file. To output the JSON text on the standard output, explicitly
specify this option with - as output file name.

The tables are initially formatted as XML and an automated XML-to-JSON conversion is applied. See section 2.7.3
for more details on XML-to-JSON conversion.

--log-json-line [='prefix’]

123

TSDuck Useris Guide Version 3.39-3922

Log each table as one single JSON line in the message logger instead of an output file.

Each table is initially formatted as XML and an automated XML-to-JSON conversion is applied. See section 2.7.3 for
more details on XML-to-JSON conversion.

The optional string parameter specifies a prefix to prepend on the log line, before the JSON text, to facilitate the
filtering of the appropriate line in the logs.

--log-xml-line [='prefix]
Log each table as one single XML line in the message logger instead of an output file.

The optional string parameter specifies a prefix to prepend on the log line, before the XML text, to facilitate the
filtering of the appropriate line in the logs.

-0 file-name
--output-file file-name
--text-output file-name

Save the tables or sections in human-readable text format in the specified file name. By default, when no output
option is specified, text is produced on the standard output.

If you need text formatting on the standard output in addition to other output such as XML, explicitly specify this
option with - as output file name.

-x file-name
--xml-output file-name

Save the tables in XML format in the specified file. To output the XML text on the standard output, explicitly specify

this option with - as output file name.

XML output options

The following options affect details in the generation of XML files.
--strict-xml

Save XML documents in strictly conformant XML format. By default, do not escape characters when this is not
syntactically necessary to make the XML text more human-readable.

--x2j-collapse-text
--x2j-enforce-boolean
--x2j-enforce-integer
--x2j-include-root
--X2j-trim-text

Specific options for automated XML-to-JSON conversion. See section 2.7.3.2 for more details.

Sections display format options

These options affect the way individual sections are displayed.

-C
--c-style

Same as --raw-dump (no interpretation of section) but dump the bytes in C-language style, e.g. "0x01, 0x02,"
instead of "01 02". Useful to include this output as data in a C source file.

--nested-tlv [=min-size]

With option --tlv , try to interpret the value field of each TLV record as another TLV area. If the min-size value is
specified, the nested TLV interpretation is performed only on value fields larger than this size. The syntax of the
nested TLV is the same as the enclosing TLV.

-r
--raw-dump

Raw dump of section, no interpretation.

-tlv syntax

124

Version 3.39-3922 TSDuck Userls Guide
For sections of unknown types, this option specifies how to interpret some parts of the section payload as TLV
records. Several --tlv options are allowed, each one describes a part of the section payload.

Each syntax string has the form start,size,tagSize,lengthSize,order . The start and size fields define the offset
and size of the TLV area in the section payload. If the size field is auto, the TLV extends up to the end of the
section. If the start field is auto, the longest TLV area in the section payload will be used. The fields tagSize and
lengthSize indicate the size in bytes of the Tag and Length fields in the TLV structure. The field order must be
either msbor Isb and indicates the byte order of the Tag and Length fields.

All fields are optional. The default values are auto,auto,1,1,msb .

Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.

--abnt

Assume that the transport stream is an ISDB one with ABNT-defined variants. See section 2.4.2 for more details.
--atsc

Assume that the transport stream is an ATSC one. See section 2.4.2 for more details.

--brazil

A synonym for --isdb --abnt --default-charset RAW-ISO-8859-15 --time-reference UTC-3 . This is a handy shortcut
when working on South American ISDB-Tb transport streams. See section 2.4.2 and section 2.5.2 for more details.

--conax
Interpret all EMMis and ECMis from unknown CAS as coming from Conax. Equivalent to --default-cas-id 0x0OB0O
--default-cas-id value

Interpret all EMMis and ECMis from unknown CAS as coming from the specified CA_System_Id.

By default, EMMis and ECMis are interpreted according to the CA_descriptor which references their PID. This

option is useful when analyzing partial transport streams without CAT or PMT to correctly identify the CA PIDIs.
--default-charset name

Default character set to use when interpreting strings from tables and descriptors. By default, the standard DVB
encoding is used. See section 2.5 for more details.

--default-pds value

Default DVB-defined private data specifier (PDS). See section 2.4.2 for more details.

--europe

A synonym for --default-charset ISO-8859-15 . See section 2.5 for more details.

--ignore-leap-seconds

Do not explicitly include leap seconds in some UTC computations. See section 2.4.2 for more details.

--irdeto

Interpret all EMMis and ECMis from unknown CAS as coming from Irdeto. Equivalent to --default-cas-id 0x0600
--isdb

Assume that the transport stream is an ISDB one. ISDB streams are normally automatically detected from their
signalization. This option is only useful when ISDB-related stuff are found in the TS before the first ISDB-specific
table. See section 2.4.2 for more details.

--japan

A synonym for --isdb --default-charset ARIB-STD-B24 --time-reference JST . See section 2.4.2 and section 2.5.2
for more details.

--mediaguard

125

TSDuck User{s Guide Version 3.39-3922
Interpret all EMMis and ECMis from unknown CAS as coming from MediaGuard. Equivalent to --default-cas-id
0x0100

--nagravision

Interpret all EMMis and ECMis from unknown CAS as coming from NagraVision. Equivalent to --default-cas-id
0x1800

--nds

Interpret all EMMis and ECMis from unknown CAS as coming from Synamedia (formerly known as NDS).
Equivalent to --default-cas-id 0x0900

--philippines

A synonym for --isdb --abnt --default-charset RAW-UTF-8 --time-reference UTC+8 . This is a handy shortcut when
working on Philippines transport streams. See section 2.4.2 and section 2.5.2 for more details.

--safeaccess

Interpret all EMMis and ECMis from unknown CAS as coming from SafeAccess. Equivalent to --default-cas-id
0x4ADC

--time-reference name
Use a non-standard time reference in DVB or ISDB-defined SI. See section 2.4.2 for more details.
--usa

A synonym for --atsc . This is a handy shortcut when working on North American transport streams. See section
2.4.2 and section 2.5.2 for more details.

--viaccess

Interpret all EMMis and ECMis from unknown CAS as coming from Viaccess. Equivalent to --default-cas-id
0x0500

--widevine

Interpret all EMMis and ECMis from unknown CAS as coming from Widevine CAS. Equivalent to --default-cas-id
0x4AD4

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

126

Version 3.39-3922 TSDuck Userls Guide

3.27. tsresync

Resynchronize corrupted transport stream files

This utility resynchronizes a corrupted transport stream file.

Usage

$ tsresync [options] [input-file]

Parameter
input-file

MPEG transport stream, either a capture file or a pipe from a live stream. Must be a binary stream of transport
stream packets, with various encapsulation or possible corruptions.

If the parameter is omitted, is an empty string or a dash (-), the standard input is used.
Options

-C
--continue

Continue re-resynchronizing after loss of synchronization. By default, stop after first packet not starting with 0x47.

-h value
--header-size value

When used with --packet-size , specifies the size of extra data preceeding each packet in the input file. The default
is zero.

-k
--keep

Keep TS packet size from input to output file. By default, strip extra data and reduce packets to 188 bytes. See
option --packet-size for a description of supported input packet sizes.

-m value
--min-contiguous value

Minimum size containing contiguous valid packets to consider a slice of input file as containing actual packets
(default: 512 kB).

-0 file-name
--output file-name

Output file name (standard output by default).

-p value
--packet-size value

Expected TS packet size in bytes. By default, try:
¥ 188-byte (standard)
¥ 204-byte (trailing 16-byte Reed-Solomon outer FEC)
¥ 192-byte (leading 4-byte timestamp in M2TS/Blu-ray disc files).
If the input file contains any other type of packet encapsulation, use options --packet-size and --header-size .

-s value
--sync-size value

Number of initial bytes to analyze to find start of packet synchronization (default: 1 MB).

Generic common command options

127

TSDuck Useris Guide Version 3.39-3922

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

128

Version 3.39-3922 TSDuck Userls Guide

3.28. tsscan

Digital TV network scanning of frequencies and services
This utility scans frequencies, transport streams and services in a DTV network.
There are two types of scanning:

¥ NIT-based scanning: Modulation parameters must be given. In a first phase, the specified "reference"
transport stream is acquired, its NIT is read and all transport stream descriptions (with their delivery system
descriptors) are interpreted. In a second phase, all these transport streams are acquired to check their
content.

¥ Blind band scanning: This method applies to UHF and VHF bands only, for terrestrial DTV networks. All
predefined channels in the selected band in the selected region or country are scanned one by one.

Usage

$ tsscan [options]

Scanning method selection

-n
--nit-scan

Perform a NIT-based scanning.

Tuning parameters for a reference transport stream must be present (frequency or channel reference). The NIT is
read on the specified frequency and a full scan of the corresponding network is performed.

-u
--uhf-band

Perform a complete UHF-band scanning (DVB-T, ISDB-T or ATSC).
Use the predefined UHF frequency layout of the specified region (see option --hf-band-region).

By default, scan the center frequency of each channel only. Use option --use-offsets to scan all predefined offsets
in each channel.

-V
--vhf-band

Perform a complete VHF-band scanning.

See also option --uhf-band .

Tuner device options and tuning parameters

All options from the dvb input plugin are also available to tsscan. As an exception, the option --delivery-system
can be specified several times with tsscan (see below). See section 4.21 for the list of tuning options.

In the dvb input plugin documentation, the "reception options" specify which tuner to use and basic reception
timeouts. These options are used by tsscan in all types of scanning.

--delivery-system value
Specify which delivery system to use.
With --nit-scan , this is the delivery system for the stream which contains the NIT to scan.

With --uhf-band and --vhf-band , the option can be specified several times. In that case, the multiple delivery
systems are tested in the specified order on each channel. This is typically used to scan terrestrial networks using
DVB-T and DVT-T2. Be aware that the scan time is multiplied by the number of specified systems on channels
without signal.

129

TSDuck Useris Guide Version 3.39-3922

With UHF and VHF scanning, the only allowed modulations are DVB-T (the default) and DVB-T2. Other specific
tuning parameters are used with --nit-scan only. They are used to receive the initial reference transport stream
from which the NIT is analyzed.

When the delivery system is not specified, the default system for the tuner is used. When it is specified, the
delivery system must be one of the following values:

Table 6. Values for option --delivery-system (tuner reception)

Value Description Supported options

ATSC ATSC --frequency --modulation --spectral-inversion

ATSC-MH ATSC -M/H (handheld) Unsupported

CMMB CMMB Terrestrial Unsupported

DAB DAB (digital audio) Unsupported

DSS DSS Satellite Unsupported

DTMB DTMB Terrestrial Unsupported

DVB-C DVB-C (same as DVB-C/A | Same as DVB-C/A

DVB-C/A DVB-C ITU-T 1.83 Annex A --fec-inner --frequency --modulation --spectral-inversion
--symbol-rate

DVB-C/B DVB-C ITU-T J.83 Annex B | Unsupported

DVB-C/C DVB-C ITU-T .83 Annex C | Same as DVB-C/A

DVB-C2 DVB-C2 Unsupported

DVB-H DVB-H (deprecated) Unsupported

DVB-S DVB-S --fec-inner --frequency --polarity --satellite-number
--spectral-inversion --symbol-rate

DVB-S-Turbo DVB-S Turbo Unsupported

DVB-S2 DVB-S2 --fec-inner --frequency --isi --modulation --pilots --pls-code
--pls-mode --polarity --roll-off --satellite-number --spectral
-inversion --symbol-rate

DVB-T DVB-T --bandwidth --frequency --guard-interval --hierarchy --high
-priority-fec --low-priority-fec --modulation --spectral
-inversion --transmission-mode

DVB-T2 DVB-T2 --bandwidth --frequency --guard-interval --hierarchy --high
-priority-fec --low-priority-fec --modulation --plp --spectral
-inversion --transmission-mode

ISDB-C ISDB-C Unsupported

ISDB-S ISDB-S --fec-inner --frequency --polarity --satellite-number
--spectral-inversion --stream-id --symbol-rate

ISDB-T ISDB-T --bandwidth --frequency --guard-interval --isdbt-layer-a-fec
--isdbt-layer-a-modulation --isdbt-layer-a-segment-count
--isdbt-layer-a-time-interleaving --isdbt-layer-b-fec --isdbt
-layer-b-modulation --isdbt-layer-b-segment-count --isdbt-layer
-b-time-interleaving --isdbt-layer-c-fec --isdbt-layer-c
-modulation --isdbt-layer-c-segment-count --isdbt-layer-c-time
-interleaving --sh-segment-count --sb-segment-index --sb
-subchannel-id --sound-broadcasting --spectral-inversion
--transmission-mode

undefined Undefined Unsupported

130

Version 3.39-3922 TSDuck Userls Guide

Scanning options
--best-strength

With UHF/VHF-band scanning, for each channel, use the offset with the best signal strength. By default, use the
average of lowest and highest offsets with required minimum strength.

Note that some tuners cannot report a correct signal strength, making this option useless.
--first-channel value

For UHF/VHF-band scanning, specify the first channel to scan (default: lowest channel in band).
--first-offset value

For UHF/VHF-band scanning, specify the first offset to scan on each channel. Note that tsscan may scan lower
offsets. As long as some signal is found at a specified offset, tsscan continues to check up to 3 lower offsets below
the "first" one. This means that if a signal is found at offset -2, offset -3 will be checked anyway, etc. up to offset -5.

-9
--global-service-list

Same as --service-list but display a global list of services at the end of scanning instead of per transport stream.
--last-channel value

For UHF/VHF-band scanning, specify the last channel to scan (default: highest channel in band).

--last-offset value

For UHF/VHF-band scanning, specify the last offset to scan on each channel. Note that tsscan may scan higher
offsets. As long as some signal is found at a specified offset, tsscan continues to check up to 3 higher offsets
above the "last" one. This means that if a signal is found at offset +2, offset +3 will be checked anyway, etc. up to
offset +5.

--min-strength value
Minimum signal strength. Frequencies with lower signal strength are ignored.

The value can be in milli-dB or percentage. It depends on the tuner and its driver. Check the displayed unit. The
default is 10, whatever unit it is.

--no-offset

For UHF/VHF-band scanning, scan only the central frequency of each channel. This is now the default. Specify
option --use-offsets to scan all offsets.

--psi-timeout milliseconds

Specifies the timeout, in milliseconds, for PSI/SI table collection. Useful with --service-list or NIT-based scan.
The default is 10,000 milli-seconds.

--save-channels filename

Save the description of all channels in the specified XML file. See appendix B, for more details on channels
configuration files.

If the file name is -, use the default tuning configuration file.
See also option --update-channels .

-l
--service-list

Read the SDT of each channel and display the list of services.
--show-modulation
Display modulation parameters.

I On Windows, with UHF band scanning, the actual modulation parameters of a transponder
" may not be available. This depends on the driver of the tuner. Most Windows drivers do not

131

TSDuck Useris Guide Version 3.39-3922

report the correct values.

--update-channels filename

Update the description of all channels in the specified XML file. The content of each scanned transport stream is
replaced in the file. If the file does not exist, it is created. See appendix B, for more details on channels
configuration files.

If the file name is -, use the default tuning configuration file.
See also option --save-channels .
--use-offsets

For UHF/VHF-band scanning, do not scan only the central frequency of each channel. Also scan frequencies with
offsets.

As an example, if a signal is transmitted at offset +1, the reception may be successful at offsets -1 to +3 (but not -2
and +4). With this option, tsscan checks all offsets and reports that the signal is at offset +1 (central point between
offsets -1 and +3).

By default, tsscan reports that the signal is found at the central frequency of the channel (offset zero). This
significantly speeds up the scanning process but does not provide any offset information.

Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.

--abnt

Assume that the transport stream is an ISDB one with ABNT-defined variants. See section 2.4.2 for more details.
--atsc

Assume that the transport stream is an ATSC one. See section 2.4.2 for more details.

--brazil

A synonym for --isdb --abnt --default-charset RAW-1SO-8859-15 --hf-band-region brazil . This is a handy
shortcut when working on South American ISDB-Tb transport streams. See section 2.4.2 and section 2.5.2 for
more details.

--default-charset name

Default character set to use when interpreting strings from tables and descriptors. By default, the standard DVB
encoding is used. See section 2.5 for more details.

--default-pds value

Default DVB-defined private data specifier (PDS). See section 2.4.2 for more details.
--europe

A synonym for --default-charset ISO-8859-15 . See section 2.5 for more details.
--hf-band-region name

Specify the region for UHF/VHF band frequency layout. The default region is europe. Another default region may
be specified per user in the TSDuck configuration file. See section A.4 for more details.

--ignore-leap-seconds
Do not explicitly include leap seconds in some UTC computations. See section 2.4.2 for more details.
--isdb

Assume that the transport stream is an ISDB one. ISDB streams are normally automatically detected from their
signalization. This option is only useful when ISDB-related stuff are found in the TS before the first ISDB-specific
table. See section 2.4.2 for more details.

--japan

132

Version 3.39-3922 TSDuck Userls Guide
A synonym for --isdb --default-charset ARIB-STD-B24 --hf-band-region japan . See section 2.4.2 and section 2.5.2
for more details.

--philippines

A synonym for --isdb --abnt --default-charset RAW-UTF-8 --hf-band-region philippines . This is a handy shortcut
when working on Philippines transport streams. See section 2.4.2 and section 2.5.2 for more details.

--usa

A synonym for --atsc --hf-band-region usa . This is a handy shortcut when working on North American transport
streams. See section 2.4.2 and section 2.5.2 for more details.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

133

TSDuck Useris Guide Version 3.39-3922

3.29. tssmartcard

Smartcard utility

This utility lists or resets the smart-card readers in the system.

Usage

$ tssmartcard [options] [reader-name]

Parameters
reader-name
The optional reader-nameparameter indicates the smart-card reader device name to list or reset.

By default, without any option or parameter, the command lists all smart-card reader devices in the system.

Options

-a hexa-data
--apdu hexa-data

Send an APDU to the smartcard. The APDU shall be specified using an even number of hexadecimal digits. In
verbose mode, the APDU, the status word and the response are displayed.

Several --apdu options can be specified. All APDUIs are sent in sequence.

-C
--cold-reset

Perform a cold reset on the smart-card.

--continue-on-error

With --apdu, continue sending next APDUIs after a PC/SC error.
By default, stop when an APDU triggered an error.

-e
--eject

Eject the smart-card (if supported by the reader device).

-t value
--timeout value

Timeout in milliseconds. The default is 1000 ms (1 second).

-W
--warm-reset

Perform a warm reset on the smart-card.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

134

Version 3.39-3922 TSDuck Userls Guide

Display the version number.

135

TSDuck Useris Guide Version 3.39-3922

3.30. tsstuff

Add stuffing to a TS file to reach a target bitrate

This utility adds stuffing packets to a TS file to reach a target bitrate. Time stamps (PCR or DTS) are extracted from
one reference PID in the input file and stuffing packets are added so that the time stamps are approximately
synchronized with the TS target bitrate.

Usage

$ tsstuff [options] [input-file]

Parameters
input-file
The input file is a TS file, typically with variable bitrate content.

If the parameter is omitted, is an empty string or a dash (-), the standard input is used.
Options

-b value
--bitrate value

Target constant bitrate of the output file.

See section 2.2 for more details on the representation of bitrates.
This is mandatory parameter, there is no default.

--buffer-size value

Input buffer size, in bytes. Must be large enough to always contain two time stamps in the reference PID. The
default is 4,194,304 bytes (4 MB).

-d
--dts-based

Use Decoding Time Stamps (DTS) in the reference PID to evaluate the amount of stuffing to insert. The default is
to use Program Clock References (PCR) instead of DTS.

-f value
--final-inter-packet value

Number of stuffing packets to add between input packets after the last time stamp (PCR or DTS). By default, use
the same number as in the previous segment, between the last two time stamps.

-i value
--initial-inter-packet value

Number of stuffing packets to add between input packets before the first time stamp (PCR or DTS). By default, use
the same number as in the first segment, between the first two time stamps.

--input-format name
Specify the format of the input transport stream file. See section 2.1.2 for more details.

-l value
--leading-packets value

Number of consecutive stuffing packets to add at the beginning of the output file, before the first input packet.
The default is zero.

-m milliseconds
--min-interval milliseconds

Minimum interval, in milli-seconds, between two recomputations of the amount of stuffing to insert. This duration

136

Version 3.39-3922 TSDuck Userls Guide

is based on timestamps, not real time. The default is 100 ms.

-0 filename
--output-file filename

Output file name (standard output by default). The output file is a TS file with the same packets as the input file
with interspersed stuffing packets and a constant bitrate.

--output-format name
Specify the format of the output file. See section 2.1.2 for more details. By default, the format is a standard TS file.

-r value
--reference-pid value

PID in which to collect time stamps (PCR or DTS) to use as reference for the insertion of stuffing packets. By
default, use the first PID containing the specified type of time stamps (PCR or DTS).

-t value
--trailing-packets value

Number of consecutive stuffing packets to add at the end of the output file, after the last input packet. The default
is zero.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

137

TSDuck Useris Guide Version 3.39-3922

3.31. tsswitch

Transport stream input source switch using remote control

This utility uses several transport stream inputs and one single output. One input is selected and passed to the
output. Using either predefined policies or remote control, it is possible to switch back and forth between inputs.

All inputs and output are performed using external plugins. These plugins are the same as the plugins which are
used by tsp.

Using the input plugins file or fork , it is possible to connect applications to some tsswitch input. One of these
applications can be tsp, in which case it is possible to insert specific processing between the input plugin and the
switch.

See a sample usage with a system diagram in section 5.1.7.
Cycling through input plugins

The list of input plugins is ordered by index on the command line, from 0 to n-1. By default, the input plugin 0 is
started when the command starts. When a plugin terminates (end of input or error), the next one is started. When
the last plugin terminates, the tsswitch command terminates.

Running all input plugins in sequence, from 0 to n-1, is called a cycle. By default, only one cycle is executed before
tsswitch terminates. Using the option --cycle , it is possible to execute a given number of cycles. With the option
--infinite , tsswitch runs endlessly.

With the option --terminate , tsswitch terminates when the current plugin terminates. In this case, without remote
control, tsswitch only executes the first plugin. If the remote control was used to switch to another input, tsswitch
terminates when the current plugin terminates, whichever it is.

Input switching modes
There are three different modes when switching from an input plugin to another one.

By default, only one input plugin is active at a time. When tsswitch starts, the first plugin is started. When an input
switch is requested, the current plugin is first stopped. When the stop operation is complete, the next plugin is
started. This mode is required when two plugins use the same input device such as a tuner. Since the device
cannot be shared, it must be completely stopped and closed before being reused by the next plugin. This is the
safest mode. The downside is that there could be a transmission hole in the output during the switch.

With option --delayed-switch , the switching operation is slightly different. The next plugin is started first. In the
meantime, output packets continue to be fetched from the previous input plugin. When the next plugin starts to
receive packets, the switch is performed: output packets are now read from the next plugin. Finally, the previous
input plugin is stopped. This mode guarantees a smooth transition. However, the actual output switch is delayed
until the next plugin is fully operational.

With option --fast-switch , all input plugins are started in parallel from the beginning and are never stopped. All
input plugins continuously read packets and fill their buffer. The current plugin performs normal flow control with
the output plugin, without packet loss. All other input plugins continuously overwrite their circular input buffer.
When an input switch is requested, the output plugin immediately jumps into the next plugin buffer where the
latest packets are already available. This mode guarantees a smooth and immediate switch. It is appropriate for
live streams only.

Remote control

Using the option --remote , tsswitch listens to UDP datagrams on a given port. Each datagram contains one switch
command. A command is an ASCII string. Any trailing control characters such as CR or LF is ignored.

The command string can be one of:

¥ Aninputindex (e.g. 0, 1, 2, etc.) Upon reception, tsswitch immediately switches to the selected input plugin.

138

Version 3.39-3922 TSDuck Userls Guide

¥ Strings next and previous (or prev) to switch to the next and previous input, respectively.
¥ Strings exit or quit to properly terminate tsswitch .
¥ Strings halt or abort to immediately abort the tsswitch process.

The bashshell provides an easy way to redirect output to a UDP message. The following sample commands send
UDP messages on port 4444 to system 127.0.0.1 (the local host).

$ echo >/dev/udp/127.0.0.1/4444 2

$ echo >/dev/udp/127.0.0.1/4444 next
$ echo >/dev/udp/127.0.0.1/4444 prev
$ echo >/dev/udp/127.0.0.1/4444 exit

This is the easiest way to use the tsswitch remote control. Note that this is a feature of bash not a Linux feature. It
is available on all platforms, including macOS and Cygwin or Msys on Windows.

Event notification

It is possible to notify some external system of switching events, typically when a new input is selected. This can
be done in two ways. First, it is possible to launch an external shell command each time a switching event occurs.
Second, it is possible to send a JSON description of the event over UDP (possibly on a multicast address if
necessary).

As an example, the following command demonstrates both methods at the same time:

$ tsswitch --infinite --event-command "echo ==== EVENT"-event-udp localhost:4444 \
E -l fork "tsp-lfile $FILE1-P regulate -P until --second 5" \

E -l fork "tsp-lfile $FILE2-P regulate -P until --second 5" \

E -Odrop

The output of the command illustrates how the --event-commandoption works:

==== EVENT newinput 0 0
==== EVENT newinput 0 1
==== EVENT newinput 1 0
==== EVENT newinput 0 1
==== EVENT newinput 1 0
==== EVENT newinput 0 1

The first message refers to the command startup, using input #0 as initial input. All other messages refer to
switching events from input #0 to input #1 or vice-versa.

To demonstrate the usage of the JSON UDP messages, we use the following command from another session
running in parallel. It loops on reception of one UDP message using the command nc (netcat). The output of ncis
piped into jg (JSON query) to display an indented and colored output of the JSON message.

$ while true; do nc -u -l -w04444|jq
{

E "command" "tsswitch"

E "event" : "newinput",

E "new-input" : 0,

E "origin" : "tsduck" ,

E "previous-input" : 1,

E "timestamp": "2021/03/13 19:33:42.595"
}

{

;. done

139

TSDuck Useris Guide Version 3.39-3922

E "command" "tsswitch"

E "event" : "newinput",

E "new-input" : 1,

E "origin" : "tsduck" ,

E "previous-input” : 0,

E "timestamp": "2021/03/13 19:33:47.688"

}
{
E "command" "tsswitch"
E "event" : "newinput",
E "new-input" : 0,
E "origin" : "tsduck" ,
E "previous-input” : 1,
E "timestamp": "2021/03/13 19:33:52.780"
}
Usage

The general syntax of the tsswitch command is the following:

tsswitch [tsswitch-options] \
-l input-name [input-options] ... \
[-O output-name [output-options]]

m M &~

All tsswitch-options must be placed on the command line before the input and output plugin specifications. There
must be at least one input plugin and at most one output plugin. The default output plugin is file , sending all
packets to the standard output.

On the command line, the order of the input plugins is significant. They are indexed from 0 to n-1. This index
value is used in the remote control protocol to select an input stream.

Plugin activation options

-l name

Designate a shared library plugin for packet input. There is no default. At least one input plugin shall be specified.
-O name

Designate the shared library plugin for packet output. By default, write packets to standard output.

All input and output plugins which are available for tsp can be used by tsswitch . See the description of the
command tsp for the method to locate the plugin files.

General options

-b value
--buffer-packets value

Specify the size in TS packets of each input plugin buffer. The default is 512 packets.

-l
--list-plugins

List all available plugins.
--max-input-packets value

Specify the maximum number of TS packets to read at a time. This value may impact the switch response time.
The default is 128 packets. The actual value is never more than half the - -buffer-packets value.

--max-output-packets value

140

Version 3.39-3922 TSDuck Userls Guide

Specify the maximum number of TS packets to write at a time. The default is 128 packets.

Input cycles options

-c value
--cycle value

Specify how many times to repeat the cycle through all input plugins in sequence. By default, all input plugins are
executed in sequence only once (--cycle 1). The options --cycle , --infinite and --terminate are mutually
exclusive.

--first-input value
Specify the index of the first input plugin to start. By default, the first plugin (index 0) is used.

-i
--infinite

Infinitely repeat the cycle through all input plugins in sequence.

-t
--terminate

Terminate execution when the current input plugin terminates.

Input modes options

-d
--delayed-switch

Perform delayed input switching. When switching from one input plugin to another one, the second plugin is
started first. Packets from the first plugin continue to be output while the second plugin is starting. Then, after the
second plugin starts to receive packets, the switch occurs: packets are now fetched from the second plugin.
Finally, after the switch, the first plugin is stopped.

By default, the current input is first stopped and then the next one is started. Options --delayed-switch and --fast
-switch are mutually exclusive.

-f
--fast-switch

Perform fast input switching. All input plugins are started at once and they continuously receive packets in
parallel. Packets are dropped, except for the current input plugin. This option is typically used when all inputs are
live streams on distinct devices (not the same DVB tuner for instance).

By default, only one input plugin is started at a time. When switching, the current input is first stopped and then
the next one is started. Options --delayed-switch and --fast-switch are mutually exclusive.

-p value
--primary-input value

Specify the index of the input plugin which is considered as primary or preferred.

This input plugin is always started, never stopped, even without --fast-switch . When no packet is received on this
plugin, the normal switching rules apply. However, as soon as packets are back on the primary input, the
reception is immediately switched back to it.

By default, there is no primary input, all input plugins are equal.

--receive-timeout value

Specify a receive timeout in milliseconds (independently of any equivalent feature the input plugins).

When the current input plugin has received no packet within this timeout, automatically switch to the next plugin.

By default, without --primary-input , there is no automatic switch when the current input plugin is waiting for
packets. With --primary-input , the default is 2,000 ms.

Remote control options

141

TSDuck Useris Guide Version 3.39-3922

-a address
--allow address

Specify an IP address or host name which is allowed to send remote commands. Several --allow options can be
used to specify several allowed remote control systems.

By default, all received commands are accepted. If at least one --allow option is specified, any remote command
which is not sent by an allowed host is rejected.

This is a security feature, but not a perfect one since IP address spoofing is trivial with UDP.
--no-reuse-port
Disable the reuse port socket option. Do not use unless completely necessary.

-r [address:]port
--remote [address:]port

Specify the local UDP port which is used to receive remote commands. If an optional address is specified, it must
be a local IP address of the system. By default, there is no remote control.

--udp-buffer-size value

Specifies the UDP socket receive buffer size in bytes (socket option).

Event notification options

The following options are used to notify external systems of events occurring in tsswitch . Currently, only one type
of event is defined: its name is newinput and is signalled when input switching occurs (including the first input
when tsswitch starts).

--event-command "command"

When a switch event occurs, run the specified external shell command. This can be used to notify some external
system of the event.

The command receives additional parameters:

1. Event name, currently only newinput is defined.

2. The input index before the event.

3. The input index after the event.

4. Optional: the user data string from --event-user-data option.
These parameters can be used or ignored by the alarm command.
--event-local-address address

With --event-udp , when the destination is a multicast address, specify the IP address of the outgoing local
interface. It can be also a host name that translates to a local address.

--event-ttl value

With --event-udp , specifies the TTL (Time-To-Live) socket option. The actual option is either "Unicast TTL" or
"Multicast TTL", depending on the destination address. Remember that the default Multicast TTL is 1 on most
systems.

--event-udp address:port

When a switch event occurs, send a short JSON description over UDP/IP to the specified destination. This can be
used to notify some external system of the event.

The address specifies an IP address which can be either unicast or multicast. It can be also a host name that
translates to an IP address. The port specifies the destination UDP port.

--event-user-data 'string '

A user-defined string which is passed to the event processing.

142

Version 3.39-3922 TSDuck Userls Guide

With --event-command this string is passed as last parameter of the user-specified command.

With --event-udp , this string is passed as user-data JSON value.
Monitoring options

-mfilename]
--monitor [=filename]

Continuously monitor the system resources which are used by the application process. This includes CPU load,
virtual memory usage. Useful to verify the stability of the application or benchmarking the packet processing
performance.

The optional file is an XML monitoring configuration file. See section C.2, for more details on resource monitoring
configuration files.

Asynchronous logging options

This application is multi-threaded. Each thread may log messages at any time. To avoid delaying an application
thread, the messages are displayed asynchronously in a low priority thread.

--log-message-count value

Specify the maximum number of buffered log messages. This value specifies the maximum number of buffered
log messages in memory, before being displayed. When too many messages are logged in a short period of time,
while plugins use all CPU power, the low-priority log thread has no resource. If it cannot display on time, the
buffered messages and extra messages are dropped. Increase this value if you think that too many messages are
dropped.

--synchronous-log

With this option, each logged message is guaranteed to be displayed, synchronously, without any loss of
message. The downside is that an application thread may be blocked for a short while when too many messages
are logged.

-t
--timed-log

Each logged message contains a time stamp.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

143

TSDuck Useris Guide Version 3.39-3922

3.32. tstabcomp

Compile or decompile MPEG tables from XML files

This utility is an MPEG table compiler which takes MPEG tables in source form as XML files and produces binary
section files.

The tstabcomp utility is also an MPEG table decompiler. From a binary file containing sections, it recreates an XML
file. This XML file can be edited by hand and recompiled for instance.

See section 2.3 for a description of the format of PSI/SI files which can be manipulated by TSDuck and more
specifically section 2.3.2 for a complete description of XML files.

Additionally, TSDuck defines automated XML-to-JSON translation rules (see section section 2.7.3). The command
tstabcomp can use these translation rules to read input source files in JSON format and write output decompiled
tables in JSON format. However, in all cases, XML is used as intermediate format. Input JSON files are translated to
XML first and then compiled in binary format. On output, the tables are first decompiled in XML format and then
translated to JSON.

Usage

$ tstabcomp [options] input-file ...

Parameters
input-file
XML or JSON source files to compile or binary table files to decompile.

By default, files ending in .xml or .json are compiled and files ending in .bin are decompiled. For other files,
explicitly specify --compile or --decompile .

If an input file name is a dash (-), the standard input is used. In that case, --compile or --decompile must be
specified since the input file type cannot be deduced from its name.

If an input file name starts with <?xm| it is considered as inline XML content Similarly, if an input file name starts
with { or [, itis considered as inline JSON content
Options

-C
--compile

Compile all files as XML or JSON source files into binary files. This is the default for .xml or .json files.

-d
--decompile

Decompile all files as binary files into XML files. This is the default for .bin files.

-e
--extensions

With --xml-model , include the content of the available extensions.

-f
--from-json

Each input file must be a JSON file, typically from a previous automated XML-to-JSON conversion or in a similar
format.

This is automatically detected for file names ending in .json . This option is only required when the input file name
has a non-standard extension or is the standard input.

By default, in decompilation mode, in the absence of .json extension, input files are read as XML.

144

Version 3.39-3922 TSDuck Userls Guide
5
--json

When decompiling, perform an automated XML-to-JSON conversion. The output file is in JSON format instead of
XML. See section 2.7.3 for more details on XML-to-JSON conversion.

-0 file-name --output file-name

Specify the output file name.

If the specified path is a directory, the output file is built from this directory and default file name.
If the specified name is a dash (-), the standard output is used.

By default, the output file has the same name as the input and extension .bin (compile), .xml or .json (decompile).
The default output file for the standard input (-) is the standard output (-).

If more than one input file is specified, the output path, if present, must be either a directory name or the
standard output (-).

-X
--xml-model

Display the XML model of the table files. This model is not a full XML-Schema, this is an informal template file
which describes the expected syntax of TSDuck XML files. See section 2.6.3 for a description of XML model files.

If --output is specified, the model is saved here. Do not specify input files.

XML output options
The following options affect details in the generation of XML files.
--strict-xml

Save XML documents in strictly conformant XML format. By default, do not escape characters when this is not
syntactically necessary to make the XML text more human-readable.

--x2j-collapse-text
--x2j-enforce-boolean
--x2j-enforce-integer
--x2j-include-root
--X2j-trim-text

Specific options for automated XML-to-JSON conversion. See section 2.7.3.2 for more details.

Sections files options

These options affect the way sections are loaded from binary, XML or JSON files. They are used in commands
tspacketize , tstabcomp, and plugin inject .

--eit-actual

With --eit-normalization , generate all EIT Actual. Same as --eit-actual-pf --eit-actual-schedule

--eit-actual-pf

With --eit-normalization , generate EIT p/f Actual. If no EIT selection option is specified, all EITis are generated.
--eit-actual-schedule

With --eit-normalization , generate EIT Schedule Actual. If no EIT selection option is specified, all EITis are
generated.

--eit-base-date date

With --eit-normalization , use the specified date as reference for the allocation of the various EIT events in
sections and segments.

The date must be in the format "YYYY/MM/DD [hh:mm:ss]". If only the date is present, it is used as base for the
allocation of EIT schedule. If the time is also specified, it is the current time for the snapshot of EIT p/f. By default,
use the oldest date in all EIT sections as base date.

145

TSDuck Useris Guide Version 3.39-3922

--eit-normalization
Reorganize all EIT sections according to the rules from [ETSI-101-211].

¥ EIT present/following: One single EIT p/f subtable is built per service. It is split in two sections, one for present
and one for following events.

¥ EIT schedule: All EIT schedule are kept but they are completely reorganized. All events are extracted and
spread over new EIT sections according to ETSI TS 101 211 rules.

If several files are specified, the reorganization of ElTis is performed inside each file independently. This is fine as

long as all EITis for a given service are in the same input file.

See also option --eit-base-date

--eit-other

With --eit-normalization , generate all EIT Other. Same as --eit-other-pf --eit-other-schedule

--eit-other-pf

With --eit-normalization , generate EIT p/f Other. If no EIT selection option is specified, all EITis are generated.
--eit-other-schedule

With --eit-normalization , generate EIT Schedule Other. If no EIT selection option is specified, all EITis are
generated.

--eit-pf

With --eit-normalization , generate all EIT p/f. Same as --eit-actual-pf --eit-other-pf

--eit-schedule

With --eit-normalization , generate all EIT Schedule. Same as --eit-actual-schedule --eit-other-schedule
--pack-and-flush

When loading a binary section file, pack incomplete tables, ignoring missing sections, and flush them. Sections
are renumbered to remove any hole between sections.

Use with care because this may create inconsistent tables.

Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.

--abnt

Assume that the transport stream is an ISDB one with ABNT-defined variants. See section 2.4.2 for more details.
--atsc

Assume that the transport stream is an ATSC one. See section 2.4.2 for more details.

--brazil

A synonym for --isdb --abnt --default-charset RAW-ISO-8859-15 --time-reference UTC-3 . This is a handy shortcut
when working on South American ISDB-Tb transport streams. See section 2.4.2 and section 2.5.2 for more details.

--default-charset name

Default character set to use when interpreting strings from tables and descriptors. By default, the standard DVB
encoding is used. See section 2.5 for more details.

--europe
A synonym for --default-charset ISO-8859-15 . See section 2.5 for more details.
--ignore-leap-seconds

Do not explicitly include leap seconds in some UTC computations. See section 2.4.2 for more details.

--isdb

146

Version 3.39-3922 TSDuck Userls Guide

Assume that the transport stream is an ISDB one. ISDB streams are normally automatically detected from their
signalization. This option is only useful when ISDB-related stuff are found in the TS before the first ISDB-specific
table. See section 2.4.2 for more details.

--japan

A synonym for --isdb --default-charset ARIB-STD-B24 --time-reference JST . See section 2.4.2 and section 2.5.2
for more details.

--philippines

A synonym for --isdb --abnt --default-charset RAW-UTF-8 --time-reference UTC+8 . This is a handy shortcut when
working on Philippines transport streams. See section 2.4.2 and section 2.5.2 for more details.

--time-reference name
Use a non-standard time reference in DVB or ISDB-defined Sl. See section 2.4.2 for more details.
--usa

A synonym for --atsc . This is a handy shortcut when working on North American transport streams. See section
2.4.2 and section 2.5.2 for more details.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

147

TSDuck Useris Guide Version 3.39-3922

3.33. tstabdump

Dump MPEG tables and sections

This utility dumps in human readable format MPEG tables, as saved in binary files by the tstables utility for
instance.

Usage

$ tstabdump [options] [input-file ...]

Parameters
input-file

Binary section file. Several files can be specified. By default, without file and without --ip-udp , the binary tables
are read from the standard input.

With --ip-udp , no file shall be specified. Binary sections and tables are received over UDP/IP as sent by the utility
tstables or the plugin tables .
Options

-Xx value
--max-tables value

Maximum number of tables or sections to dump. Stop logging tables when this limit is reached. This option is
useful with --ip-udp which never ends otherwise.

Tables and sections interpretation and formatting options

--ignore-crc32

Do not check CRC32 of input sections. This can be used to analyze sections with incorrect CRC32 but which are
otherwise correct.

--no-pager
Do not send output through a pager process. By default, if the output device is a terminal, the output is paged.

See section 3.1.4 for more details.

Sections display format options

These options affect the way individual sections are displayed.

-C
--c-style

Same as --raw-dump (no interpretation of section) but dump the bytes in C-language style, e.g. "0x01, 0x02,"
instead of "01 02". Useful to include this output as data in a C source file.

--nested-tlv [=min-size]

With option --tlv , try to interpret the value field of each TLV record as another TLV area. If the min-size value is
specified, the nested TLV interpretation is performed only on value fields larger than this size. The syntax of the
nested TLV is the same as the enclosing TLV.

-r
--raw-dump

Raw dump of section, no interpretation.
-tlv syntax

For sections of unknown types, this option specifies how to interpret some parts of the section payload as TLV
records. Several --tlv options are allowed, each one describes a part of the section payload.

148

Version 3.39-3922 TSDuck Userls Guide

Each syntax string has the form start,size,tagSize,lengthSize,order . The start and size fields define the offset
and size of the TLV area in the section payload. If the size field is auto, the TLV extends up to the end of the
section. If the start field is auto, the longest TLV area in the section payload will be used. The fields tagSize and
lengthSize indicate the size in bytes of the Tag and Length fields in the TLV structure. The field order must be
either msbor Isb and indicates the byte order of the Tag and Length fields.

All fields are optional. The default values are auto,auto,1,1,msb .

Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.

--abnt

Assume that the transport stream is an ISDB one with ABNT-defined variants. See section 2.4.2 for more details.
--atsc

Assume that the transport stream is an ATSC one. See section 2.4.2 for more details.

--brazil

A synonym for --isdb --abnt --default-charset RAW-ISO-8859-15 --time-reference UTC-3 . This is a handy shortcut
when working on South American ISDB-Tb transport streams. See section 2.4.2 and section 2.5.2 for more details.

--conax

Interpret all EMMis and ECMis from unknown CAS as coming from Conax. Equivalent to --default-cas-id 0x0B00
--default-cas-id value

Interpret all EMMis and ECMis from unknown CAS as coming from the specified CA_System_Id.

By default, EMMIis and ECMis are interpreted according to the CA_descriptor which references their PID. This
option is useful when analyzing partial transport streams without CAT or PMT to correctly identify the CA PIDIs.

--default-charset name

Default character set to use when interpreting strings from tables and descriptors. By default, the standard DVB
encoding is used. See section 2.5 for more details.

--default-pds value

Default DVB-defined private data specifier (PDS). See section 2.4.2 for more details.

--europe

A synonym for --default-charset ISO-8859-15 . See section 2.5 for more details.

--ignore-leap-seconds

Do not explicitly include leap seconds in some UTC computations. See section 2.4.2 for more details.

--irdeto

Interpret all EMMis and ECMis from unknown CAS as coming from Irdeto. Equivalent to --default-cas-id 0x0600
--isdb

Assume that the transport stream is an ISDB one. ISDB streams are normally automatically detected from their
signalization. This option is only useful when ISDB-related stuff are found in the TS before the first ISDB-specific
table. See section 2.4.2 for more details.

--japan

A synonym for --isdb --default-charset ARIB-STD-B24 --time-reference JST . See section 2.4.2 and section 2.5.2
for more details.

--mediaguard

Interpret all EMMis and ECMis from unknown CAS as coming from MediaGuard. Equivalent to --default-cas-id
0x0100

149

TSDuck Useris Guide Version 3.39-3922

--nagravision

Interpret all EMMis and ECMis from unknown CAS as coming from NagraVision. Equivalent to --default-cas-id
0x1800

--nds

Interpret all EMMis and ECMis from unknown CAS as coming from Synamedia (formerly known as NDS).
Equivalent to --default-cas-id 0x0900

--philippines

A synonym for --isdb --abnt --default-charset RAW-UTF-8 --time-reference UTC+8 . This is a handy shortcut when
working on Philippines transport streams. See section 2.4.2 and section 2.5.2 for more details.

--safeaccess

Interpret all EMMis and ECMis from unknown CAS as coming from SafeAccess. Equivalent to --default-cas-id
0x4ADC

--time-reference name
Use a non-standard time reference in DVB or ISDB-defined Sl. See section 2.4.2 for more details.
--usa

A synonym for --atsc . This is a handy shortcut when working on North American transport streams. See section
2.4.2 and section 2.5.2 for more details.

--viaccess

Interpret all EMMis and ECMis from unknown CAS as coming from Viaccess. Equivalent to --default-cas-id
0x0500

--widevine

Interpret all EMMis and ECMis from unknown CAS as coming from Widevine CAS. Equivalent to --default-cas-id
0x4AD4

UDP reception options

These options apply only when --ip-udp is used. In this case, the binary sections are received using UDP/IP. No
input file is used.

--buffer-size value

Specify the UDP socket receive buffer size in bytes (socket option).

--default-interface

Let the system find the appropriate local interface on which to listen. By default, listen on all local interfaces.
--disable-multicast-loop

Disable multicast loopback.

By default, incoming multicast packets are looped back on local interfaces, if an application sends packets to the
same group from the same system. This option disables this.

Warning: On input sockets, this option is effective only on Windows systems. On UNIX systems (Linux, macOS,
BSD), this option applies only to output sockets.

--first-source

Filter UDP packets based on the source address. Use the sender address of the first received packet as only
allowed source.

This option is useful when several sources send packets to the same destination address and port. Accepting all
packets could result in a corrupted stream and only one sender shall be accepted.

To allow a more precise selection of the sender, use option --source . Options --first-source and --source are

150

Version 3.39-3922 TSDuck Userls Guide

mutually exclusive.
--ip-udp [[source@]address:]port
Specify that the sections and tables are received from UDP/IP, as sent by tstables or the plugin tables .

The port part is mandatory and specifies the UDP port to listen on. The address part is optional. It specifies an IP
multicast address to listen on. It can be also a host name that translates to a multicast address. If the address is
not specified, the plugin simply listens on the specified local port and receives the packets which are sent to one
of the local (unicast) IP addresses of the system.

An optional source address can be specified as source@address:portin the case of source-specific multicast (SSM).
--local-address address

Specify the IP address of the local interface on which to listen. It can be also a host name that translates to a local
address. By default, listen on all local interfaces.

--no-encapsulation

With --ip-udp , receive the tables as raw binary messages in UDP packets. By default, the tables are formatted into
TLV messages.

--no-reuse-port
Disable the reuse port socket option. Do not use unless completely necessary.
--receive-timeout value

Specify the UDP reception timeout in milliseconds. This timeout applies to each receive operation, individually. By
default, receive operations wait for data, possibly forever.

--reuse-port
Set the reuse port socket option. This is now enabled by default, the option is present for legacy only.
--source address[:port]

Filter UDP packets based on the specified source address. This option is useful when several sources send packets
to the same destination address and port. Accepting all packets could result in a corrupted stream and only one
sender shall be accepted.

Options --first-source and --source are mutually exclusive.
--ssm

This option forces the usage of source-specific multicast (SSM) using the source address which is specified by the
option --source . Without --ssm, standard ("any-source") multicast is used and the option --source is used to filter
incoming packets.

The --ssm option is implicit when the classical SSM syntax source@address:port is used.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

151

TSDuck Useris Guide Version 3.39-3922

3.34. tstables

Collect MPEG tables and sections

This utility collects MPEG tables or individual sections from a transport stream. The tables can be saved in a
human readable format, in binary or XML files or sent over UDP/IP to some collecting server. It is possible to save
the tables in several formats at the same time. By default, the tables are displayed in human-readable format on
the standard output.

Usage

$ tstables [options] [input-file]

Parameters
input-file

MPEG transport stream, either a capture file or a pipe from a live stream (see option --format for binary formats).
If the parameter is omitted, is an empty string or a dash (-), the standard input is used. Tables and sections
selection options

Input options
--format name

Specify the format of the input transport stream. See section 2.1.2 for more details.

Tables selection and manipulation options
--all-once

Same as --all-sections but collect each section only once per combination of PID, table id, table id extension,
section number and version.

-a
--all-sections

Display/save all sections, as they appear in the stream. By default, collect complete tables, with all sections of the
tables grouped and ordered and collect each version of a table only once. Note that this mode is incompatible
with all forms of XML and JSON output since valid XML and JSON structures may contain complete tables only.

-d
--diversified-payload

Select only sections with diversified payload. This means that section payloads containing the same byte value (all
0x00 or all OxFF for instance) are ignored. Typically, such sections are stuffing and can be ignored that way.

--exclude-current

Exclude short sections and long sections with "current"” indicator. This is rarely necessary.
See also --include-next

-fill-eit

Before exiting, add missing empty sections in EITis and flush them. This can be useful with segmented EIT
schedule where empty sections at end of segments are usually not transmitted.

--include-next
Include long sections with "next" indicator. By default, they are excluded.
--invalid-sections

Display and dump invalid sections. These sections are normally dropped because they are truncated, incomplete,
corrupted, have an invalid CRC32, etc. Because these sections are invalid, they cannot be formatted as normal

152

Version 3.39-3922 TSDuck Userls Guide

sections. Instead, a binary and text dump is displayed.
--invalid-versions

Track invalid version numbers in sections.

Per MPEG rules, the version number of a section with long header shall be updated each time the content of the
section is updated. With this option, the content of the sections is tracked to detect modified sections without
version updates.

These events are considered as errors.

-Xx value
--max-tables value

Maximum number of tables to dump. Stop execution when this limit is reached.
--negate-pid
Negate the PID filter: specified PIDis are excluded.

Warning: this can be a dangerous option on complete transport streams since PIDis not containing sections can
be accidentally selected.

--negate-section-number
Negate the section number filter: specified sections are excluded.

-n
--negate-tid

Negate the TID filter: specified TIDis are excluded.

--negate-tid-ext

Negate the TID extension filter: specified TID extensions are excluded.
--no-deep-duplicate

Do not report identical sections in the same PID, even when non-consecutive. A hash of each section is kept for
each PID and later identical sections are not reported.

Warning: This option accumulates memory for hash values of all sections since the beginning. Do not use that
option for commands running too long or the process may crash with insufficient memory.

--no-duplicate
Do not report consecutive identical tables with a short section in the same PID.
This can be useful for ECMis. This is the way to display new ECMis only.

By default, tables with long sections are reported only when a new version is detected but tables with a short
section are all reported.

--only-invalid-sections
Same as --invalid-sections ~ but do not display valid tables and sections, only invalid sections.
--pack-all-sections

Same as --all-sections but also modify each long section so that it becomes a valid complete table. Its
section_number and last_section_number are forced to zero. Use with care because this may create inconsistent
tables. This option can be useful with tables with sparse sections such as ElTis to save them in XML format (as an
alternative, see also --fill-eit).

--pack-and-flush

Before exiting, pack incomplete tables, ignoring missing sections, and flush them. Use with care because this may

create inconsistent tables. Unlike option --pack-all-sections , --pack-and-flush does not force --all-sections
because it only applies to the last incomplete tables before exiting.
-p pidl[-pid2]

153

TSDuck Useris Guide Version 3.39-3922

--pid pid1[-pid2]

PID filter: select packets with these PID values.

Several --pid options may be specified. By default, without --pid option, all PIDis are used.
PIDis containing PES data are automatically ignored.

--psi-si

Add all PIDis containing PSI/SI tables, ie. PAT, CAT, PMT, NIT, SDT and BAT. The PMT PIDis are dynamically collected
each time a new PAT is encountered.

Note that EIT, TDT and TOT are not included. Use --pid 18 to get EIT and --pid 20 to get TDT and TOT.
--section-content hexa-data

Binary content filter: Specify binary data that must match the beginning of the section.

The value must be a string of hexadecimal digits specifying any number of bytes.

See also option --section-mask to specify selected bits or bytes only.

--section-mask hexa-data

With --section-content , specify a mask of meaningful bits in the binary data that must match the beginning of the
section.

The value must be a string of hexadecimal digits specifying any number of bytes.
If omitted or shorter than the --section-content parameter, the mask is implicitely padded with FF bytes.
--section-number numl[-num2]

Section number filter: when sections are filtered individually instead of complete tables (--all-sections), select
sections with this section number or range of section numbers.

Several --section-number options may be specified.

-t id1[-id2]
~tid id1[-id2]

TID filter: select sections with these TID (table id) values.
Several --tid options may be specified. Without --tid option, all tables are saved.

-e id1[-id2]
~tid-ext id1[-id2]

TID extension filter: select sections with these table id extension values (apply to long sections only).

Several --tid-ext options may be specified. Without --tid-ext option, all tables are saved.

Output options

-b file-name
--binary-output file-name

Save the sections in raw binary format in the specified output file name.
If the file name is empty or a dash (-), the binary sections are written to the standard output.
See also option --multiple-files

-f
--flush

Flush standard output after each display. Useful to monitor the content if the output has been redirected to a disk
file.

--json-output file-name
Save the tables in JSON format in the specified file. To output the JSON text on the standard output, explicitly

specify this option with - as output file name. The tables are initially formatted as XML and an automated XML-to-

154

Version 3.39-3922 TSDuck Userls Guide

JSON conversion is applied.

See section 2.7.3 for more details on XML-to-JSON conversion.

--log

Display a short one-line log of each table instead of full table display.
--log-hexa-line [='prefix]

Log each binary table (or section with --all-sections) as one single hexadecimal line in the message logger
instead of an output binary file.

The optional string parameter specifies a prefix to prepend on the log line before the hexadecimal text to facilitate
the filtering of the appropriate line in the logs.

--log-json-line [='prefix’]
Log each table as one single JSON line in the message logger instead of an output file.

Each table is initially formatted as XML and an automated XML-to-JSON conversion is applied. See section 2.7.3 for
more details on XML-to-JSON conversion.

The optional string parameter specifies a prefix to prepend on the log line before the JSON text to facilitate the
filtering of the appropriate line in the logs.

--log-size value

With option --log , specify how many bytes are displayed at the beginning of the table payload (the header is not
displayed). The default is 8 bytes.

--log-xml-line [='prefix’]

Log each table as one single XML line in the message logger instead of an output file. The optional string
parameter specifies a prefix to prepend on the log line before the XML text to facilitate the filtering of the
appropriate line in the logs.

--meta-sections
Add an hexadecimal dump of each section in the XML and JSON metadata.

-m
--multiple-files

Create multiple binary output files, one per section. A binary output file name must be specified (option --binary
-output).

Assuming that the specified file name has the form base.ext, each file is created with the name
base_pXXXX_tXX.exfor short sections and base_ pXXXX_tXX_eXXXX_vXX_sXXfertlong sections, where the XX
respectively specify the hexadecimal values of the PID, TID (table id), TIDext (table id extension), version and
section index.

--no-pager

Do not send output through a pager process. By default, if the output device is a terminal, the output is paged.
See section 3.1.4 for more details.

-0 file-name
--output-file file-name
--text-output file-name

Save the tables or sections in human-readable text format in the specified file name. By default, when no output
option is specified, text is produced on the standard output.

If you need text formatting on the standard output in addition to other output like binary files (--binary-output) or
UPD/IP (--ip-udp), explicitly specify this option with - as output file name.

--packet-index

Display the index of the first and last TS packet of each displayed section or table.

155

TSDuck Useris Guide Version 3.39-3922

--rewrite-binary

With --binary-output , rewrite the same file with each table. The specified file always contains one single table, the
latest one.

--rewrite-json

With --json-output , rewrite the same file with each table. The specified file always contains one single table, the
latest one.

--rewrite-xml

With --xml-output , rewrite the same file with each table. The specified file always contains one single table, the
latest one.

--time-stamp
Display a time stamp (current local time) with each table.
--xml-output file-name

Save the tables in XML format in the specified file. To output the XML text on the standard output, explicitly specify
this option with - as output file name.

UDP/IP logging options

-i address:port
--ip-udp address:port

Send binary tables over UDP/IP to the specified destination. The address specifies an IP address which can be
either unicast or multicast. It can be also a host name that translates to an IP address. The port specifies the
destination UDP port.

See also option --udp-format .
--local-udp address

With --ip-udp , when the destination is a multicast address, specify the IP address of the outgoing local interface.
It can be also a host name that translates to a local address.

--no-encapsulation

With --ip-udp , send the tables as raw binary messages in UDP packets. By default, the binary tables are formatted
into TLV messages.

Ignored if --udp-format is not binary (the default).
-t value

With --ip-udp , specifies the TTL (Time-To-Live) socket option. The actual option is either "Unicast TTL" or "Multicast
TTL", depending on the destination address. Remember that the default Multicast TTL is 1 on most systems.

--udp-format value
With --ip-udp , specify the format of sections in the UDP datagrams.

The value must be one of binary , JSONXML The default is binary . With --all-sections or --all-once , the only
allowed format is binary .

XML output options

The following options affect details in the generation of XML files.
--strict-xml

Save XML documents in strictly conformant XML format. By default, do not escape characters when this is not
syntactically necessary to make the XML text more human-readable.

--x2j-collapse-text
--x2j-enforce-boolean
--x2j-enforce-integer

156

Version 3.39-3922 TSDuck Userls Guide

--X2j-include-root
--X2j-trim-text

Specific options for automated XML-to-JSON conversion. See section 2.7.3.2 for more details.
Sections display format options

These options affect the way individual sections are displayed.

-C
--c-style

Same as --raw-dump (no interpretation of section) but dump the bytes in C-language style, e.g. "0x01, 0x02,"
instead of "01 02". Useful to include this output as data in a C source file.

--nested-tlv [=min-size]

With option --tlv , try to interpret the value field of each TLV record as another TLV area. If the min-size value is
specified, the nested TLV interpretation is performed only on value fields larger than this size. The syntax of the
nested TLV is the same as the enclosing TLV.

-r
--raw-dump

Raw dump of section, no interpretation.
-tlv syntax

For sections of unknown types, this option specifies how to interpret some parts of the section payload as TLV
records. Several --tlv options are allowed, each one describes a part of the section payload.

Each syntax string has the form start,size,tagSize,lengthSize,order . The start and size fields define the offset
and size of the TLV area in the section payload. If the size field is auto, the TLV extends up to the end of the
section. If the start field is auto, the longest TLV area in the section payload will be used. The fields tagSize and
lengthSize indicate the size in bytes of the Tag and Length fields in the TLV structure. The field order must be
either msbor Isb and indicates the byte order of the Tag and Length fields.

All fields are optional. The default values are auto,auto,1,1,msb .

Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.

--abnt

Assume that the transport stream is an ISDB one with ABNT-defined variants. See section 2.4.2 for more details.
--atsc

Assume that the transport stream is an ATSC one. See section 2.4.2 for more details.

--brazil

A synonym for --isdb --abnt --default-charset RAW-ISO-8859-15 --time-reference UTC-3 . This is a handy shortcut
when working on South American ISDB-Tb transport streams. See section 2.4.2 and section 2.5.2 for more details.

--conax
Interpret all EMMis and ECMis from unknown CAS as coming from Conax. Equivalent to --default-cas-id 0x0B0O
--default-cas-id value

Interpret all EMMis and ECMis from unknown CAS as coming from the specified CA_System_Id.

By default, EMMis and ECMis are interpreted according to the CA_descriptor which references their PID. This
option is useful when analyzing partial transport streams without CAT or PMT to correctly identify the CA PIDIs.

--default-charset name

Default character set to use when interpreting strings from tables and descriptors. By default, the standard DVB
encoding is used. See section 2.5 for more details.

157

TSDuck Useris Guide Version 3.39-3922

--default-pds value

Default DVB-defined private data specifier (PDS). See section 2.4.2 for more details.

--europe

A synonym for --default-charset ISO-8859-15 . See section 2.5 for more details.

--ignore-leap-seconds

Do not explicitly include leap seconds in some UTC computations. See section 2.4.2 for more details.

--irdeto

Interpret all EMMis and ECMis from unknown CAS as coming from Irdeto. Equivalent to --default-cas-id 0x0600
--isdb

Assume that the transport stream is an ISDB one. ISDB streams are normally automatically detected from their
signalization. This option is only useful when ISDB-related stuff are found in the TS before the first ISDB-specific
table. See section 2.4.2 for more details.

--japan

A synonym for --isdb --default-charset ARIB-STD-B24 --time-reference JST . See section 2.4.2 and section 2.5.2
for more details.

--mediaguard

Interpret all EMMis and ECMis from unknown CAS as coming from MediaGuard. Equivalent to --default-cas-id
0x010Q0

--nagravision

Interpret all EMMis and ECMis from unknown CAS as coming from NagraVision. Equivalent to --default-cas-id
0x180Q

--nds

Interpret all EMMis and ECMis from unknown CAS as coming from Synamedia (formerly known as NDS).
Equivalent to --default-cas-id 0x0900

--philippines

A synonym for --isdb --abnt --default-charset RAW-UTF-8 --time-reference UTC+8 . This is a handy shortcut when
working on Philippines transport streams. See section 2.4.2 and section 2.5.2 for more details.

--safeaccess

Interpret all EMMis and ECMis from unknown CAS as coming from SafeAccess. Equivalent to --default-cas-id
0x4ADC

--time-reference name
Use a non-standard time reference in DVB or ISDB-defined SI. See section 2.4.2 for more details.
--usa

A synonym for --atsc . This is a handy shortcut when working on North American transport streams. See section
2.4.2 and section 2.5.2 for more details.

--viaccess

Interpret all EMMis and ECMis from unknown CAS as coming from Viaccess. Equivalent to --default-cas-id
0x0500

--widevine

Interpret all EMMis and ECMis from unknown CAS as coming from Widevine CAS. Equivalent to --default-cas-id
0x4AD4

Generic common command options

158

Version 3.39-3922 TSDuck Userls Guide

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

159

TSDuck Useris Guide Version 3.39-3922

3.35. tsterinfo

DVB-Terrestrial Information
This utility performs various operations and conversions on DVB-T transmission and modulation parameters:

¥ Compute the carrier frequency from a UHF or VHF channel number and optional offset count.
Triggered when option --uhf-channel , --vhf-channel , and optionally --offset-count , are specified.

¥ Retrieve the UHF or VHF channel number and offset count from a carrier frequency.
Triggered when option --frequency is specified.

¥ Compute the nominal transport stream bitrate from OFDM modulation parameters (bandwidth, high-priority
stream error correction rate, constellation and guard interval). Supported for non-hierarchical transmission
only.
Triggered when options --guard-interval and --high-priority-fec , and optionally --bandwidth and
--constellation , are specified.

¥ Given a transport stream bitrate, retrieve the OFDM modulation parameters (bandwidth, high-priority stream
error correction rate, constellation and guard interval). Sometimes, several combinations of parameters are
possible; they are all reported (see also option --max-guess). This could be useful on Windows systems where
the tuners are not able to report their current parameters. In that case, you can use tsanalyze , tshitrate , or
tsp -v to evaluate the transport stream bitrate based on PCR analysis. Then, tsterinfo will retrieve the most
probable modulation parameters. Note that only the four mentioned parameters can be retrieved. All other
DVB-T transmission parameters are independent from the transport stream bitrate.
Triggered when option --bitrate is specified.

See some examples in section 5.1.5.

Usage

$ tsterinfo [options]

Options

-w value
--bandwidth value

Specify the OFMD bandwith in Hz, used to compute the resulting bitrate.

For compatibility with old versions, "low" values (below 1000) are interpreted in MHz. This means that values 8 and
8,000,000 are identical. Both mean 8 MHz.

The default is 8 MHz.

-b value
--bitrate value

Transport stream bitrate in bits/second, based on 188-byte packets.
See section 2.2 for more details on the representation of bitrates.

Given this bitrate, tsterinfo will try to guess the OFDM modulation parameters: bandwidth, high-priority stream
error correction rate, constellation and guard interval.

-c value
--constellation value

Specify the OFMD constellation, used to compute the resulting bitrate. Must be one of QPSK16-QAM64-QAM
(default: 64-QAM

-d
--default-region

160

Version 3.39-3922 TSDuck Userls Guide

Display the default region for UHF/VHF band frequency layout. See also option --hf-band-region

-f value
--frequency value

Carrier frequency in Hz. UHF or VHF channel and offset will be displayed.

-g value
--guard-interval value

Specify the OFMD guard interval, used to compute the resulting bitrate. Must be one of 1/32, 1/16, 1/8, 1/4 (no
default).

-h value
--high-priority-fec value

Specify the OFMD error correction for high priority streams, used to compute the resulting bitrate. Must be one of
1/2, 213, 3/4,5/6, 7/8 (no default).

-m value
--max-guess value

When used with --bitrate , specify the maximum number of sets of modulation parameters to display. By default,
display only one set of parameters, the one giving the closest bitrate. When the given bitrate is not exact and the
transmission parameters are uncertain, it may be useful to display more than one possible set of values. The
difference between the specified bitrate and nominal bitrate is displayed for each set of parameters. The various
sets of parameters are displayed in increasing order of bitrate difference (ie. most probable parameters first).
When more than one set of parameters give the same bitrate, they are all displayed, regardless of --max-guess.

-0 value
--offset-count value

Specify the number of offsets from the UHF or VHF channel. The default is zero. See options --uhf-channel and
--vhf-channel .

-n
--region-names

List all known regions with UHF/VHF band frequency layout.

-s
--simple

Produce simple output: only numbers, no comment, no formatting. Typically useful to write scripts and reuse
tsterinfo output.

-u value
--uhf-channel value

Specify the UHF channel number of the carrier. Can be combined with an --offset-count option. The resulting
frequency will be displayed.

-v value
--vhf-channel value

Specify the VHF channel number of the carrier. Can be combined with an --offset-count option. The resulting
frequency will be displayed.

Interpretation of the transport stream content

These options controls the peculiarities of local Digital TV standards and how they are used.
--brazil

A synonym for --hf-band-region brazil . This is a handy shortcut when working on South American ISDB-Tb
transport streams. See section 2.4.2 and section 2.5.2 for more details.

-r name
--hf-band-region name

161

TSDuck User{s Guide Version 3.39-3922
Specify the region for UHF/VHF band frequency layout. The default region is europe. Another default region may
be specified per user in the TSDuck configuration file. See section A.4 for more details.

--japan

A synonym for --hf-band-region japan . See section 2.4.2 and section 2.5.2 for more details.

--philippines

A synonym for --hf-band-region philippines . This is a handy shortcut when working on Philippines transport
streams. See section 2.4.2 and section 2.5.2 for more details.

--usa

A synonym for --hf-band-region usa . This is a handy shortcut when working on North American transport
streams. See section 2.4.2 and section 2.5.2 for more details.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

162

Version 3.39-3922 TSDuck Userls Guide

3.36. tstestecmg

Test a DVB SimulCrypt compliant ECMG with an artificial load

This utility is designed to test the resistance of an ECMG. It behaves as a DVB SimulCrypt SCS and connects to one
ECMG. It creates several "ECM channels" and several "ECM streams" per channel.

In each ECM stream, tstestecm emulates crypto-periods. At the beginning of each crypto-period, it requests one
ECM. The returned ECM is not used, no scrambling is performed, this is just a stress test on the ECMG.

It is possible to run tstestecmg from multiple systems in parallel, connecting to the same ECMG, to emulate very
hight loads. Each instance creates multiple channels (be sure to correctly distribute the channel numbers between
instances, see option --first-channel-id).

Usage

$ tstestecmg [options] host:port

Test options

--max-ecm count

Stop the test after generating the specified number of ECMis. By default, the test endlessly runs.

--max-seconds seconds

Stop the test after the specified number of seconds. By default, the test endlessly runs.

--statistics-interval seconds

Specify the interval in seconds between the display of two statistics lines. When set to zero, disable periodic
statistics, only display final statistics. The default is 10 seconds.

DVB SimulCrypt options

-a hexa-digits
--access-criteria hexa-digits

Specifies the access criteria as sent to the ECMG. The value must be a suite of hexadecimal digits. All ECMIis are
generated using these access criteria. Empty by default.

-c value
--channels value

Specify the number of ECM channels to open. There is one TCP connection to the ECMG per channel. The default
is 10 channels.

--cp-duration seconds

Specify the crypto-period duration in seconds. The default is 10 seconds.

--cw-size hytes

Specify the size in bytes of control words. The default is 8 bytes.

--ecmg-scs-version value

Specify the version of the ECMG" SCS DVB SimulCrypt protocol. Valid values are 2 and 3. The default is 2.
--first-channel-id value

Specify the first ECM_channel_idvalue for the ECMG. Subsequent connections use sequential values. The default is
0.

--first-ecm-id value

Specify the first ECM_idvalue to use in the first stream. Subsequent streams use sequential values. The default is
the value of --first-channel-id times the value of --streams-per-channel .

163

TSDuck Useris Guide Version 3.39-3922

--first-stream-id value
Specify the first ECM_stream_ido use in each channel. Subsequent streams use sequential values. The default is O.

-s value
--streams-per-channel value

Specify the number of streams to open in each channel. The default is 10.
--super-cas-id value

Specify the DVB SimulCrypt Super_CAS_Idrhis is a required parameter.

DVB SimulCrypt logging options
--log-data [=level]
Same as --log-protocol but applies to CW_provision and ECM_responsmessages only.

To debug the session management without being flooded by data messages, use --log-protocol=info --log
-data=debug.

--log-protocol[=level]

Log all ECMG" SCS protocol messages using the specified level. If the option is not present, the messages are
logged at debuglevel only. If the option is present without value, the messages are logged at info level.

A level can be a numerical debug level or any of the following: fatal , severe, error , warning, info , verbose, debug
Asynchronous logging options

This application is multi-threaded. Each thread may log messages at any time. To avoid delaying an application
thread, the messages are displayed asynchronously in a low priority thread.

--log-message-count value

Specify the maximum number of buffered log messages. This value specifies the maximum number of buffered
log messages in memory, before being displayed. When too many messages are logged in a short period of time,
while plugins use all CPU power, the low-priority log thread has no resource. If it cannot display on time, the
buffered messages and extra messages are dropped. Increase this value if you think that too many messages are
dropped.

--synchronous-log

With this option, each logged message is guaranteed to be displayed, synchronously, without any loss of
message. The downside is that an application thread may be blocked for a short while when too many messages
are logged.

-t
--timed-log

Each logged message contains a time stamp.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

164

Version 3.39-3922 TSDuck Userls Guide

3.37. tsvatek

List VATek-based modulator devices

This utility lists modulator devices which are based on chips from Vision Advance Technology Inc. (VATek). The
final modulator device products can be from different manufacturers.

System support

Unlike Dektec and HiDes devices which are available on Linux and Windows only, VATek-based devices are
available on all operating systems, including macQOS, because VATek chips do not need a dedicated device driver.
They are accessed through the portable libusb library which is available on all operating systems.

Usage

$ tshides [options] [device]

Parameters

The optional device index, from 0 to N-1 (with N being the number of VATek-based devices in the system) indicates
which device to display.

The default is 0. Use option --all to have a complete list of devices in the system.
Options

-a
--all

List all VATek-based devices available on the system.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

165

TSDuck Useris Guide Version 3.39-3922

3.38. tsversion

Check version, download and upgrade TSDuck
By default, this utility simply displays the TSDuck version.

Additionally, in prebuilt binary packages of TSDuck as available from tsduck.io or github.com, the tsversion
command can also connect to GitHub to list all available releases of TSDuck, check for a new version, download it
or upgrade TSDuck to the latest version.

These capabilities are usually disabled in TSDuck packages which are available through a package manager on
Linux or through Homebrew on macOS. In these cases, the package manager handles the installation and
upgrades of all packages, including TSDuck.

As an example, the following command checks for a new version online and, if one is available, downloads it and
upgrades TSDuck:

$ tsversion --upgrade

Detecting the availability of a new release always works. However, to perform an upgrade, the binary packages for
the current operating system and architecture must be available online. Not all combinations of binary packages
are available. It is only guaranteed that TSDuck can be upgraded by tsversion for Windows 64 bits, the latest
version of most 64-bit Linux distros (Fedora, Red Hat & clones, Debian, Ubuntu) and macOS (through Homebrew).
For other platforms, you must recompile TSDuck from sources.

Usage

$ tsversion [options]

Common options

-e
--extensions

List all installed TSDuck extensions.

-i
--integer

Display the current version of TSDuck in integer format, suitable for comparison in a script.

Example: 31000669 for 3.10-669 (5 digits are used for the last commit number).
--support name

Check support for a specific feature.

By default, TSDuck is built with all features. However, it may be compiled with specific makeoptions such as
NODEKTEGarLNOPCSCtd remove dependencies on some libraries. The option --support can be used to test if a
feature is available.

The feature name must be one of all , dektec, hides, http , pcsc, rist , srt , vatek.
Using all displays all features.

With any other option, tsversion simply exits with a success or failure status, depending if the corresponding
feature is implemented or not.

Upgrade options

The following options are available in prebuilt binary packages of TSDuck from tsduck.io or github.com. They may
be disabled in TSDuck packages which are available through a package manager on Linux or through Homebrew

166

https://tsduck.io/download/tsduck
https://github.com/tsduck/tsduck/releases
https://tsduck.io/download/tsduck
https://github.com/tsduck/tsduck/releases

Version 3.39-3922 TSDuck Userls Guide

on macOS.
--all
List all available versions of TSDuck from GitHub.

-b
--binary

With --download, fetch the binary installers of the latest version.

This is the default. When --source is specified, you have to explicitly specify --binary if you also need the binary
installers.

-C
--check

Check if a new version of TSDuck is available from GitHub.

-d
--download

Download the latest version (or the version specified by --name) from GitHub. By default, download the binary
installers for the current operating system and architecture. Specify --source to download the source code.

If a local file with the same name and size already exists, the local file is reused and the download operation is
skipped.

-f
--force

Force downloads even if a file with same name and size already exists.

-l
--latest

Display the latest version of TSDuck from GitHub.

-n version-name
--name version-name

Get information or download from GitHub the specified version, not the latest one.

-0 dir-name
--output-directory dir-name

Specify the output directory for downloaded files (current directory by default).

-S
--source

With --download, download the source code archive instead of the binary installers.

-t
--this

Display the current version of TSDuck (this executable).

-u
--upgrade

Upgrade TSDuck to the latest version.
Internet access proxy options

The following options are used to specify how this system accesses Internet.
--proxy-host name

Optional proxy host name for Internet access.

--proxy-password string

Optional proxy password for Internet access (for use with --proxy-user).

167

TSDuck Useris Guide Version 3.39-3922

--proxy-port value
Optional proxy port for Internet access (for use with --proxy-host).
--proxy-user name

Optional proxy user name for Internet access.

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.
Environment variables

Listing versions and information about versions accesses the GitHub site. Remote information is requested from
the GitHub API. GitHub limits the anonymous access to its APl to a certain number of requests per hour per
source IP address. If you get an error such as "API rate limit exceeded", you may have to wait for the next hour
and retry. Alternatively, if you are a registered GitHub user and you have a registered authentication token, this
rate limit is removed.

Set the value of your authentication token into the environment variable TSDUCK_GITHUB_API_TOé&feke using
tsversion . For macOS users, if the environment variable HOMEBREW_GITHUB_API_is@keady defined, it will be
used.

168

Version 3.39-3922 TSDuck Userls Guide

3.39. tsxml

Test tool for TSDuck XML manipulation

This simple utility can be used to test some XML files which are manipulated by TSDuck.

Usage

$ tsxml [options] [input-file ...]

Parameters
input-files
Any number of XML files. Input files are processed in sequence.

If an input file is specified as a dash (-), the standard input is used.

General options

--attributes-merge name

With --merge, specify how attributes coming from the XML nodes to merge are processed.
Must be one of:

¥ add New attributes, not present in the base node, are added. Attributes already existing in the base node are
ignored. This is the default.

¥ none No attribute is copied from the node to merge.

¥ replace : All attributes from the nodes to merge are copied in the base node, replacing existing ones.

-C
--channel

A shortcut for --model tsduck.channels.model.xml
This option verifies that the input files are valid channel configuration files.

-f
--from-json

Each input file must be a JSON file, typically from a previous automated XML-to-JSON conversion or in a similar
format. A reverse automated JSON-to-XML conversion is performed first and the resulting XML document is
processed as input.

See section 2.7.3 for more details on XML-to-JSON conversion.

-h
--hf-band

A shortcut for --model tsduck.hfbands.model.xml
This option verifies that the input files are valid HF bands definition files.

- value
--indent value

Specify the indentation size of output files. The default is 2 spaces.

]
--json

Perform an automated XML-to-JSON conversion. The output file is in JSON format instead of XML.
See section 2.7.3 for more details on XML-t0-JSON conversion.

169

TSDuck Useris Guide Version 3.39-3922

--Inb

A shortcut for --model tsduck.Inbs.model.xml

This option verifies that the input files are valid satellite LNB definition files.

--merge

Merge all input files into one single XML document, instead of processing all input files one by one.
With this option, all input XML files must have the same root tag.

-m filename
--model filename

Specify an XML model file which is used to validate all input files.

The file is automatically searched in the directories for TSDuck configuration files.
--monitor

A shortcut for --model tsduck.monitor.model.xml

This option verifies that the input files are valid resource monitoring configuration files.

-0 filename
--output filename

Specify the name of the output file (standard output by default).
An output file is produced only if --patch , --reformat or --json are specified.

-p filename
--patch filename

Specify an XML patch file. See section 2.6.4 for more details on XML patch files.

All operations which are specified in this file are applied on each input XML file. Several --patch options can be
specified. Patch files are sequentially applied on each input file.

This option is useful to test the XML patch files which are applied on the signalisation in various plugins using
option --patch-xml .

-r
--reformat

Reformat the input XML files according to the default XML layout for TSDuck XML files. This option is useful to
generate an expected output file format.

If more than one input file is specified, they are all reformatted in the same output file.

-S hame
--sort name

Specify that the sub-elements of all XML structures with the specified tag name will be sorted in alphanumerical
order.

Several --sort options can be specified.

-t
--tables

A shortcut for --model tsduck.tables.model.xml . Table definitions for installed TSDuck extensions are also merged
in the main model.

This option verifies that the input files are valid PSI/SI table files.
--uncomment

Remove comments from the XML documents.

--xml-line[="prefix']

Output each transformed input XML file as one single XML line in the message logger instead of an output file.

170

Version 3.39-3922 TSDuck Userls Guide

The optional string parameter specifies a prefix to prepend on the log line before the XML text to facilitate the
filtering of the appropriate line in the logs.

XML output options

The following options affect details in the generation of XML files.
--strict-xml

Save XML documents in strictly conformant XML format. By default, do not escape characters when this is not
syntactically necessary to make the XML text more human-readable.

--x2j-collapse-text
--x2j-enforce-boolean
--x2j-enforce-integer
--x2j-include-root
--X2j-trim-text

Specific options for automated XML-to-JSON conversion. See section 2.7.3.2 for more details.

JSON output options

--json-buffer-size value

With --json-tcp or --json-udp , specify the network socket send buffer size.
--json-line [='prefix]

Same as --json but report the JSON text as one single line in the message logger instead of fully formatted output
file.

The optional string parameter specifies a prefix to prepend on the log line before the JSON text to facilitate the
filtering of the appropriate line in the logs.

--json-tcp address:port
Same as --json but report the JSON text as one single line in a TCP connection instead of the output file.

The address specifies an IP address or a host name that translates to an IP address. The port specifies the
destination TCP port.

By default, a new TCP connection is established each time a JSON message is produced (see also option --json
-tcp-keep). Be aware that a complete TCP connection cycle may introduce some latency in the processing. If
latency is an issue, consider using '--json-udp'.

--json-tcp-keep

With --json-tcp , keep the TCP connection open for all JSON messages. By default, a new TCP connection is
established each time a JSON message is produced.

--json-udp address:port
Same as --json but report the JSON text as one single line in a UDP datagram instead of the output file.

The address specifies an IP address which can be either unicast or multicast. It can be also a host name that
translates to an IP address. The port specifies the destination UDP port.

Be aware that the size of UDP datagrams is limited by design to 64 kB. If larger JSON contents are expected,
consider using --json-tcp

--json-udp-local address

With --json-udp , when the destination is a multicast address, specify the IP address of the outgoing local
interface. It can be also a host name that translates to a local address.

--json-udp-ttl value

With --json-udp , specifies the TTL (Time-To-Live) socket option. The actual option is either "Unicast TTL" or
"Multicast TTL", depending on the destination address. Remember that the default Multicast TTL is 1 on most
systems.

171

TSDuck Useris Guide Version 3.39-3922

Generic common command options

The following options are implicitly defined in all commands.

--debug[=N]

Produce verbose debug output. Specify an optional debug level N (1 by default).
--help

Display the command help text.

--verbose

Produce verbose messages.

--version

Display the version number.

172

Version 3.39-3922 TSDuck Userls Guide

Chapter 4. TSP Plugins

This chapter contains the reference documentation of all plugins for tsp, the transport stream processor. The input
and output plugins can also be used by the command tsswitch .

The following table lists all available plugins.

Table 7. tsp plugins

Plugin Type Description

aes packet Experimental AES scrambling

analyze packet Analyze the structure of the transport stream

bat packet Perform various transformations on the BAT

bitrate_monitor packet Monitor the bitrate of the TS or a given set of PIDis

boostpid packet Boost the bitrate of a PID, stealing stuffing packets

cat packet Perform various transformations on the CAT

clear packet Extract clear (non-scrambled) sequences

continuity packet Check TS continuity counters

count packet Count TS packets per PID

craft input, packet |Build or modify specifically crafted packets

cutoff packet Set labels on TS packets upon reception of UDP messages

datainject packet DVB SimulCrypt-compliant EMM and private data injector

decap packet Decapsulate TS packets from a PID produced by encapplugin

dektec input, output | Dektec DTA-1xx DVB-ASI and modulator devices 1/0

descrambler packet Generic DVB descrambler

drop output Drop output packets

dump packet Dump transport stream packets

duplicate packet Duplicate PIDis, reusing null packets

dvb input DVB receiver devices (DVB-S, DVB-C, DVB-T) input

eit packet Analyze EIT sections

eitinject packet Generate and inject EITis in a transport stream

encap packet Encapsulate packets from several PIDis into one single PID

feed packet Extract an inner TS from an outer feed TS (experimental)

file input, output, |Transport stream files input / output. As packet processor plugin, save
packet packets to a file and pass to next plugin

filter packet Filter TS packets according to various criteria

fork input, output, |Exchange packets with a created process, either input or output
packet

fuzz packet Introduce random errors in the transport stream

hides output Send the transport stream to a HiDes modulator device

history packet Report a history of major events on the transport stream

173

	TSDuck User’s Guide
	Contents

