
TSDuck Developer’s Guide

Thierry Lelégard

Version 3.38-3816, July 2024

Contents
Preface . 7

1. Building and Installing TSDuck. 9

1.1. Building TSDuck . 9

1.1.1. Tested systems . 9

1.1.2. Building on UNIX systems (Linux, macOS, BSD) . 10

1.1.2.1. Pre-requisites . 10

1.1.2.2. C++ compiler requirements . 11

1.1.2.3. Hardware device libraries . 12

1.1.2.4. Using make on BSD systems . 13

1.1.2.5. Building the TSDuck binaries alone . 13

1.1.2.6. Building without specialized dependencies. 13

1.1.2.7. Building with specific debug capabilities . 14

1.1.2.8. Displaying full build commands . 14

1.1.2.9. Building the TSDuck installation packages . 14

1.1.2.10. For packagers of Linux distros. 15

1.1.2.11. Installing in non-standard locations . 15

1.1.2.12. Using pkgconfig after installation. 15

1.1.2.13. Running from the build location . 16

1.1.3. Building on Windows systems . 16

1.1.3.1. Pre-requisites . 16

1.1.3.2. Building the binaries without installer . 17

1.1.3.3. Building the Windows installers . 17

1.1.3.4. Installing in non-standard locations . 17

1.1.3.5. Running from the build location . 17

1.1.4. Installer files summary . 17

1.2. Building the documentation. 18

1.2.1. Building on UNIX systems (Linux, macOS, BSD) . 19

1.2.2. Building on Windows. 20

1.3. Installing TSDuck . 20

1.3.1. Installing on Windows . 20

1.3.1.1. Using winget. 20

1.3.1.2. Download an installer . 20

1.3.2. Installing on macOS. 21

1.3.3. Installing on Linux . 21

1.3.4. Installing on BSD systems. 22

2. Developing Applications with TSDuck . 23

2.1. Building an application with the TSDuck library . 23

2.1.1. Pre-requisites . 23

2.1.2. Building applications on UNIX systems (Linux, macOS, BSD) . 23

2.1.3. Building applications on Windows . 24

2.2. Overview of the TSDuck library . 24

2.2.1. C++ features . 24

2.2.1.1. Portability issues . 24

TSDuck Developer’s Guide Version 3.38-3816

2

2.2.1.2. C++ strings . 25

2.2.1.3. Unicode strings . 25

2.2.1.4. Binary data . 25

2.2.1.5. Singletons and static data . 26

2.2.1.6. Error reporting . 26

2.2.1.7. Exceptions . 26

2.2.1.8. Pseudo-enumeration data . 27

2.2.1.9. Command-line arguments . 27

2.2.1.10. XML data . 27

2.2.1.11. JSON data . 27

2.2.2. Cryptography . 27

2.2.3. Operating system features . 28

2.2.3.1. Miscelleaneous system utilities . 28

2.2.3.2. Time . 28

2.2.3.3. Multithreading . 28

2.2.3.4. Virtual memory. 29

2.2.3.5. Processes. 29

2.2.3.6. Networking . 29

2.2.3.7. Shared libraries . 30

2.2.3.8. Smart-card interface . 30

2.2.3.9. Windows specificities. 30

2.2.4. MPEG features . 30

2.2.4.1. Transport streams . 30

2.2.4.2. Audio, video and PES packets . 31

2.2.5. Signalization . 31

2.2.5.1. Binary, specialized and XML formats . 31

2.2.5.2. Demux and packetization . 33

2.2.5.3. Application preferences contexts . 33

2.2.6. DVB SimulCrypt protocols. 33

2.2.7. Conditional access systems . 34

2.2.8. Other forms of demux. 34

2.2.9. Digital TV tuners . 34

2.2.10. Interface to Dektec devices . 34

2.3. Java and Python bindings . 35

2.3.1. Overview . 35

2.3.2. Support classes. 35

2.3.2.1. TSDuck execution context . 35

2.3.2.2. Reporting classes . 35

2.3.2.3. Resource monitoring. 36

2.3.2.4. Plugin events . 36

2.3.3. Application/plugin communication in Java or Python . 37

2.3.4. Using TSDuck Java bindings . 38

2.3.4.1. Linux. 38

2.3.4.2. macOS . 38

2.3.4.3. Windows . 38

2.3.5. Using TSDuck Python bindings . 38

Version 3.38-3816 TSDuck Developer’s Guide

3

2.3.5.1. Linux. 39

2.3.5.2. macOS . 39

2.3.5.3. Windows . 39

2.3.5.4. Python prerequisites . 39

2.3.5.5. Implementation notes. 39

2.4. Developing a TSDuck plugin . 39

2.4.1. Plugin development workflow . 40

2.4.1.1. Developing independent third-party plugins . 40

2.4.1.2. Developing plugins for the TSDuck project . 40

2.4.2. Development guidelines . 40

2.4.2.1. Class hierarchy . 40

2.4.2.2. Invoking tsp from a plugin, the ts::TSP callbacks . 41

2.4.2.3. Joint termination support . 41

2.5. Developing a TSDuck extension. 41

2.5.1. Files in an extension . 42

2.5.2. The extension dynamic library . 42

2.5.2.1. Identification of the extension. 42

2.5.2.2. Providing an XML model file for additional tables and descriptors . 43

2.5.2.3. Providing a names files for additional identifiers . 43

2.5.2.4. Providing support for additional tables . 43

2.5.2.5. Providing support for additional descriptors . 44

2.5.2.6. Implementing advanced section filtering capabilities . 45

2.5.2.7. Providing support for additional Conditional Access Systems . 45

2.5.3. Building cross-platform binary installers for an extension . 46

3. Contributing to TSDuck Development. 47

3.1. Transparency of contributions . 47

3.2. Contributor workflow . 47

3.2.1. Initial setup . 47

3.2.2. Contributing code . 47

3.2.3. Testing your code. 48

3.3. Integrator workflow. 49

4. Maintaining TSDuck Code . 50

4.1. Testing TSDuck . 50

4.1.1. Testing overview. 50

4.1.2. Organization of the tests . 50

4.1.3. The TSDuck library test suite . 50

4.1.4. The TSDuck tools and plugins test suite. 52

4.1.4.1. Structure of the test suite . 52

4.1.4.2. Adding new tests . 52

4.1.4.3. Testing a development version . 53

4.1.4.4. Large files . 53

4.2. Automation . 53

4.2.1. Continuous integration . 54

4.2.2. Nightly builds . 54

4.2.3. Release creation . 54

4.2.3.1. Building the various binaries . 55

TSDuck Developer’s Guide Version 3.38-3816

4

4.2.3.2. Creating the GitHub release. 55

4.2.3.3. Creating the HomeBrew release . 55

4.2.3.4. Updating the version number . 56

4.2.4. Cleanup of long-standing issues . 56

4.3. TSP design . 56

4.3.1. Plugin Executors. 56

4.3.2. Transport packets buffer. 56

4.4. Adding PSI/SI tables or descriptors . 58

4.4.1. Code base selection . 58

4.4.1.1. Extended descriptors . 58

4.4.1.2. Private descriptors (DVB) . 59

4.4.1.3. Table-specific descriptors . 59

4.4.2. Affiliation to a standard. 60

4.4.3. Declaring identifiers. 60

4.4.4. XML definition. 61

4.4.5. C++ class . 61

4.4.6. Names file . 62

4.4.7. Documentation. 62

4.4.7.1. User’s guide . 62

4.4.7.2. Programming reference . 63

4.4.8. Tests . 64

5. Coding guidelines. 66

5.1. Rationale for coding guidelines . 66

5.2. Classification of coding guidelines . 66

5.3. Generic coding guidelines. 67

5.3.1. Generic coding rules and recommendations . 67

5.3.1.1. Software architecture . 67

5.3.1.2. Source code structure . 68

5.3.1.3. Revision control system . 69

5.3.1.4. Internationalization . 70

5.3.1.5. Modularity and compatibility . 70

5.3.1.6. Naming conventions . 71

5.3.1.7. Coding principles . 72

5.3.1.8. Secure coding . 73

5.3.1.9. Software evolution. 77

5.3.1.10. Compilation errors and warnings . 78

5.3.1.11. Makefiles . 78

5.3.1.12. Unit testing . 80

5.3.1.13. Integration of open source software . 81

5.3.2. Generic coding conventions . 82

5.3.2.1. Control characters . 82

5.3.2.2. Character encoding . 83

5.4. C++ coding guidelines . 83

5.4.1. C++ coding rules and recommendations . 83

5.4.1.1. Language selection . 84

5.4.1.2. Modularity. 84

Version 3.38-3816 TSDuck Developer’s Guide

5

5.4.1.3. Naming and syntax formatting . 86

5.4.1.4. Coding style . 88

5.4.1.5. Strict typing. 96

5.4.1.6. Assertions . 99

5.4.1.7. Secure coding. 101

5.4.1.8. C++ classes . 109

5.4.1.9. C++ constructors and destructors. 116

5.4.1.10. C++ operators. 120

5.4.1.11. C++ object management . 122

5.4.2. C++ coding conventions . 130

5.4.2.1. Source code formatting . 131

5.4.2.2. Modularity. 131

5.4.2.3. Naming conventions . 131

5.4.2.4. Syntax formatting conventions . 134

5.4.2.5. Doxygen self-documentation. 137

Appendix A: PSI/SI Signalization Reference . 140

A.1. PSI/SI tables . 140

A.2. PSI/SI descriptors. 141

Appendix B: License . 151

Appendix C: References . 152

C.1. Acronyms and abbreviations . 152

Bibliography . 152

TSDuck Developer’s Guide Version 3.38-3816

6

Preface
TSDuck is a toolkit which manipulates MPEG Transport Streams (TS).

As a product, TSDuck provides many different command-line tools and plugins. Internally, the architecture of
TSDuck is made of a large shareable library (tsduck.dll on Windows, libtsduck.so on Linux and BSD systems,
libtsduck.dylib on macOS). Most of the valuable processing is performed by the various C++ classes from the
TSDuck library. All command-line tools and plugins are usually small wrappers around this library.

The TSDuck library offers generic C++ classes as well as specialized classes for MPEG transport streams. This
library can be used as a general-purpose C++ library for third-party applications, outside the TSDuck tools and
plugins.

The following figure illustrates the TSDuck software architecture and how it interacts with third-party applications.

Figure 1. TSDuck software architecture

This document is the TSDuck Developer’s Guide. It can be equally used by TSDuck maintainers and developers of
third-party applications.

Structure of this guide:

• The chapter 1 describes how to build and install TSDuck. This section is especially useful on platforms for
which there is not pre-built binary package. TSDuck users should read this chapter to build and install TSDuck
on their system.

• The chapter 2 is an introduction for developers who use the TSDuck library in their application, outside
TSDuck itself.

• The chapter 3 is a guide for advanced users who wish to contribute to TSDuck development, submit new
features, improvements, or bug fixes.

• The chapter 4 is a reference section for TSDuck maintainers. It describes how the code is organized, the test
and delivery processes, the automation of the project.

Version 3.38-3816 TSDuck Developer’s Guide

7

In addition to this developer’s guide, a comprehensive reference programming documentation is available online.
It documents all TSDuck public C++ classes, as well as the Python and Java API’s. This is a reference documentation
which is automatically generated from the source files using doxygen.

License

TSDuck is released under the terms of the license which is commonly referred to as "BSD 2-Clause License" or
"Simplified BSD License" or "FreeBSD License". This is a liberal license which allows TSDuck to be used in a large
number of environments. See the appendix B for more details.

Documentation format

The TSDuck developer’s guide is built using asciidoctor, from a set of text files which are maintained alongside the
source code, in the same git repository.

This guide is formatted for HTML. The file tsduck-dev.html is monolithic and self-sufficient, without reference to
external images. Therefore, this HTML file can be downloaded, saved, and copied, as long as the license and
content are not modified.

A PDF version tsduck-dev.pdf is also available. However, due to limitations in the PDF generator of asciidoctor, the
rendering is sometimes not as good as the HTML document.

Documentation set

The TSDuck documentation set is made of:

1. TSDuck User’s Guide (also from tsduck.io and in PDF format)

2. TSDuck Developer’s Guide (also from tsduck.io and in PDF format)

3. TSDuck Programming Reference

TSDuck Developer’s Guide Version 3.38-3816

8

https://tsduck.io/doxy/
https://doxygen.nl/
https://asciidoctor.org
tsduck-dev.pdf
tsduck.html
https://tsduck.io/download/docs/tsduck.html
https://tsduck.io/download/docs/tsduck.pdf
tsduck-dev.html
https://tsduck.io/download/docs/tsduck-dev.html
https://tsduck.io/download/docs/tsduck-dev.pdf
https://tsduck.io/doxy/

Chapter 1. Building and Installing TSDuck
This chapter describes how to build and install TSDuck on various platforms. It is particularly useful if TSDuck has
no pre-built binary package on your platform.

In the open source world, there are many different ways of building an application. Sometimes, building an open
source application is straightforward. However, in other cases, it can be challenging, especially on non-Linux
platforms.

TSDuck deliberately sides with the user, using simple and straightforward ways of building and installing.

On each platform, TSDuck always uses "native" mechanisms, tools, and procedures. The default compiler is always
the "usual" one on the platform: GCC on Linux, Clang on macOS, Visual Studio on Windows. The packaging of
installers, when available, is also "native": .rpm packages on Fedora and Red Hat clones, .deb packages on Ubuntu,
Debian and the like, Homebrew distribution on macOS, NSIS-based executable installers on Windows.

1.1. Building TSDuck

TSDuck can be built on Windows, Linux, macOS and BSD systems.

Support for Dektec devices, DVB tuners and HiDes modulators is implemented only on Windows and Linux.
MacOS and BSD systems can only support files and networking for TS input and output. VATek-based modulators,
however, are supported on all platforms.

Some protocols such as SRT and RIST require external libraries which may not be available on all platforms or all
versions of a specific distro.

1.1.1. Tested systems

TSDuck has been tested on the following operating systems on at least one CPU architecture.

Table 1. Tested operating systems

OS Variants

macOS Intel and Apple Silicon

Window
s

Tested on Intel only

Linux Ubuntu, Debian, Raspbian, Mint, Fedora, Red Hat, CentOS, Rocky, Alma, openSUSE, Arch, Alpine,
Gentoo, Slackware

BSD FreeBSD, OpenBSD, NetBSD, DragonFlyBSD

TSDuck has been tested on the following CPU architectures on at least one operating system.

Table 2. Tested CPU architectures

Architecture Bits Endianness

Intel x86 32 bits Little endian

Intel x86-64 64 bits Little endian

Armv7 32 bits Little endian

Armv8 64 bits Little endian

MIPS 32 and 64 bits Little endian

RISC-V 64 bits Little endian

Version 3.38-3816 TSDuck Developer’s Guide

9

Architecture Bits Endianness

PowerPC 64 bits Big endian

IBM s390x 64 bits Big endian


Some tests were done by contributors and were not verified. Some tests were performed
using qemu, on an emulated platform, not a physical CPU. This is the case for RISC-V, PowerPC,
IBM s390x.

TSDuck has been tested with the following compilers on at least one operating system.

Table 3. Tested compilers

Compiler OS Minimum version

GCC Linux, BSD 11.0

Clang Linux, macOS 5.0

MSVC Windows Visual Studio 2017 15.8

The required minimum version of each compiler depends on a correct implementation of C++17. Previous
versions of each compiler have no or buggy C++17 support.

1.1.2. Building on UNIX systems (Linux, macOS, BSD)

On UNIX systems (Linux, macOS, BSD), building TSDuck simply means typing make in the top level directory of the
project. More details and options are provided in the next sections.

TL;DR

If you don’t like the details, just run this:

$ git clone https://github.com/tsduck/tsduck.git
$ cd tsduck
$ scripts/install-prerequisites.sh
$ make -j10 default docs-html
$ sudo make install

If you like thinking before doing, we recommend to read the following sections.

1.1.2.1. Pre-requisites

Operations in this section must be run once, before building TSDuck for the first time one a given system.

Execute the shell-script scripts/install-prerequisites.sh. It downloads and installs the requested packages
which are necessary to build TSDuck. The list of packages and how to install them depend on the operating
system distribution and version.

If you intend to use exclusion options in the make command line (for instance NOSRT=1 NORIST=1), specify them to
scripts/install-prerequisites.sh too. This will prevent the installation of unused libraries.

In addition to the make exclusion options, install-prerequisites.sh supports NOJAVA=1 NODOXYGEN=1.

Currently, this script supports all UNIX operating systems which were listed in Table 1.

Since all packages are pulled from the standard repositories of each distro, there is generally no need to re-run
this script later. The packages will be updated as part of the system system updates. Note, however, that a new

TSDuck Developer’s Guide Version 3.38-3816

10

version of TSDuck may require additional dependencies. In case of build error, it can be wise to run
scripts/install-prerequisites.sh again and retry.



Although TSDuck has been built and tested on Slackware, the script install-prerequisites.sh
does not support this distro yet. Slackware is not very friendly for automation. Some package
shall be individually searched for a specific version and installed by hand. It has not been
possible to find an automated way to setup the required environment to build TSDuck. Should
this be possible, contributions from Slackware experts are welcome.

1.1.2.2. C++ compiler requirements

C++ language version

TSDuck now requires a C++17 compliant compiler. GCC is supposed to support C++17 from version 8 onwards.
Clang needs version 5 at least.

However, building TSDuck with GCC versions 8 to 10 fails because of bugs in the compiler. C++17 support in GCC
really works starting with version 11.

All recent Linux distros use GCC 11, 12 or 13. Some older distros which come with older GCC versions may
propose alternative GCC packages with more recent versions.

If your distro is too old and doesn’t provide any GCC 11 package, then you cannot build TSDuck version 3.36 and
higher. On such systems, the highest TSDuck version which can be built is 3.35. This is the cost of obsolescence…

Using Clang as an alternative to GCC

If your distro is too old and doesn’t provide any GCC 11 package, another alternative is to use LLVM/Clang. Most
distros with old versions of GCC provide decently recent versions of Clang. To force a build with LLVM/Clang
instead of GCC, defined the make variable LLVM:

$ make LLVM=1

However, when the installed GCC is really old (typically before GCC 8), using Clang may not work either because
Clang uses the GCC C/C++ standard libraries and their header files. If the GCC issue is a compilation issue on GCC
8 to 10, using Clang may work. With older versions of GCC, using Clang probably does not work because the
corresponding standard library does not contain the C++17 features.

Red Hat 8.x example

Starting with Red Hat Entreprise Linux 9, all GCC versions correctly support C++17.

However, RedHat Entreprise Linux 8.8 comes with GCC 8.5.0. You can install and use GCC 11 using the following
commands:

$ sudo dnf install gcc-toolset-11-gcc-c++ gcc-toolset-11-libatomic-devel
$ source /opt/rh/gcc-toolset-11/enable
$ make ...

The first command installs the GCC 11 packages. The second command defines the required environment
variables in the current process. The last one builds TSDuck.


On RHEL, the GCC 11 packages are available in the AppStream repository. Make sure to have
activated it first.

Other Linux distros

Version 3.38-3816 TSDuck Developer’s Guide

11

Older versions of other distros such as Ubuntu, Debian and others have equivalent alternative packages for GCC
11, with different names, when they come with an older version of GCC.

If there is no enable script (as in the example above) to setup the environment, you need to define the following
variables, either as environment variables or on the make command line. The provided values are examples only
and may be different in specific environments.

$ make CXX=g++-11 CC=gcc-11 GCC=gcc-11 CPP="gcc-11 -E" AR=gcc-ar-11 ...

Since make uses the environment for the initial values of its variables, it is also possible to define them as
environment variables in some initialization script instead of using such a complex make command..

NetBSD example

As of this writing, the most recent version of NetBSD is 9.3, which comes with GCC 7.5.

More recent GCC packages are available. To install GCC 13:

$ sudo pkgin install gcc13

The compilation environment is installed in /usr/pkg/gcc13. Using GCC 13 is simply enabled by adding
/usr/pkg/gcc13/bin at the beginning of the PATH:

$ export PATH="/usr/pkg/gcc13/bin:$PATH"

DragonFlyBSD example

As of this writing, the most recent version of DragonFlyBSD is 6.4.0, which comes with GCC 8.3. Even though
DragonFlyBSD is supposed to be based on FreeBSD, its GCC version is way behind FreeBSD version 14.0 which
comes with GCC 12.2.

More recent GCC packages are available for DragonFlyBSD. To install GCC 13:

$ sudo pkg install gcc13

However, because all *BSD systems are carefully incompatible between each other, using the alternative compiler
is very different from NetBSD.

Building TSDuck:

$ gmake CXX=g++13 CC=gcc13 GCC=gcc13 CPP="gcc13 -E" AR=gcc-ar13 LDFLAGS_EXTRA="-Wl,-
rpath=/usr/local/lib/gcc13" ...

Since make uses the environment for the initial values of its variables, it is also possibe to define them as
environment variables in some initialization script instead of using such a complex make command..

Note the command gmake, the GNU Make command. See section 1.1.2.4 for more details.

1.1.2.3. Hardware device libraries

Dektec DTAPI: The command make at the top level will automatically download the LinuxSDK from the Dektec site.
There is no manual setup for DTAPI on Linux. Note that the Dektec DTAPI is available only for Linux distros on
Intel CPU’s with the GNU libc. Non-Intel systems (for instance Arm-based devices such as Raspberry Pi) cannot use
Dektec devices. Similarly, Intel-based distros using a non-standard libc (for instance Alpine Linux which uses musl
libc) cannot use Dektec devices either.

TSDuck Developer’s Guide Version 3.38-3816

12

VATek API: On Linux, the command make at the top level will automatically download the Linux version of the
VATek API from the GitHub. There is currectly no Linux package for the VATek API in the standard distros. On
Windows and macOS, binary packages are available and are installed by the install-prerequisites scripts. Using
VATek devices on BSD systems is currently not supported but should work if necessary (accessing VATek devices is
performed through libusb and not a specific kernel driver).

1.1.2.4. Using make on BSD systems

On FreeBSD, OpenBSD, NetBSD, DragonFlyBSD, the standard BSD make command uses an old syntax. The
makefiles in the TSDuck project use a GNU Make syntax and are not compatible with the BSD make command. As
part of prerequisites for BSD systems, GNU Make is installed under the name gmake. In all build commands in this
page, when make is mentioned, use gmake on all BSD systems.

1.1.2.5. Building the TSDuck binaries alone

Execute the command make at top level.

The TSDuck binaries, executables and shared objects (.so or .dylib), are built in directory bin/release-<arch>-
<hostname> by default. Consequently, the same work area can be simultaneously used by several systems. Each
system builds in its own area. You can also override the build directory using make BINDIR=….

Note that TSDuck contains thousands of source files and building it can take time. However, since most machines
have multiple CPU’s, all makefiles are designed for parallel builds. On a quad-core machine with hyperthreading (8
logical cores), for instance, the command make -j10 is recommended (10 parallel compilations), reducing the total
build time to a few minutes.

As an example, on an Intel system from 2020, building TSDuck without parallelism takes several hours. On the
same system, using -j10, it takes 20 minutes. On a recent iMac M3, using -j10, the build time is 2 minutes.

To cleanup the repository tree and return to a pristine source state, execute make clean at the top level.

1.1.2.6. Building without specialized dependencies

In specific configurations, you may want to disable some external libraries such as libcurl or pcsc-lite. Of
course, the corresponding features in TSDuck will be disabled but the impact is limited. For instance, disabling
libcurl will disable the input plugins http and hls.

The following make variables can be defined:

NOTEST Do not build unitary tests.

NODEKTEC No Dektec device support, remove dependency to DTAPI.

NOHIDES No HiDes device support.

NOVATEK No VATek device support (modulators based on VATek chips), remove dependency to libvatek.

NOCURL No HTTP support, remove dependency to libcurl.

NOPCSC No smartcard support, remove dependency to pcsc-lite.

NOEDITLINE No interactive line editing, remove dependency to libedit.

NOSRT No SRT support (Secure Reliable Transport), remove dependency to libsrt.

NORIST No RIST support (Reliable Internet Stream Transport), remove dependency to librist.

NOHWACCEL Disable hardware acceleration such as crypto instructions.

ASSERTIONS Keep assertions in production mode (slower code).

The following command, for instance, builds TSDuck without dependency to pcsc-lite, libcurl and Dektec DTAPI:

Version 3.38-3816 TSDuck Developer’s Guide

13

$ make NOPCSC=1 NOCURL=1 NODEKTEC=1

Note that some dependencies such as openssl (cryptographic library) cannot be removed because they are deeply
used inside TSDuck.

1.1.2.7. Building with specific debug capabilities

The following additional make variables can be defined to enable specific debug capabilities:

DEBUG Compile with debug information and no optimization.

GPROF Compile with code profiling using gprof.

GCOV Compile with code coverage using gcov.

ASAN Compile with code sanitizing using AddressSanitizer with default optimization.

UBSAN Compile with code sanitizing using UndefinedBehaviorSanitizer with default optimization.

1.1.2.8. Displaying full build commands

Because of the number of include directories and warning options, the compilation commands are very long,
typically more than 4000 characters, 30 to 50 lines on a terminal window. If the make commands displays all
commands, the output is messy. It is difficult to identify the progression of the build. Error messages are not
clearly identified.

Therefore, the make command only displays a synthetic line for each command such as:

[CXX] dtv/tables/dvb/tsAIT.cpp
[CXX] dtv/tables/atsc/tsATSCEIT.cpp
[CXX] dtv/tables/tsAbstractDescriptorsTable.cpp

In some cases, if can be useful to display the full compilation commands. To do this, define the variable VERBOSE as
follow:

$ make VERBOSE=1

For convenience and compatibility with some tradition, V can be used instead of VERBOSE.

1.1.2.9. Building the TSDuck installation packages

Execute the command make installer at top level to build all packages.

Depending on the platform, the packages can be .deb or .rpm files. There is currently no support to build an
installation package on other Linux distros and BSD systems.

There is no need to build the TSDuck binaries before building the installers. Building the binaries, when necessary,
is part of the installer build.

All installation packages are dropped into the subdirectory pkg/installers. The packages are not deleted by the
cleanup procedures. They are not pushed into the git repository either.


On macOS, there is no binary package for TSDuck on macOS. On this platform, TSDuck is
installed using Homebrew, a package manager for open-source projects on macOS. See
section 1.3.2 for more details.

TSDuck Developer’s Guide Version 3.38-3816

14

https://brew.sh

1.1.2.10. For packagers of Linux distros

Packagers of Linux distros may want to create TSDuck packages. The build methods are not different. This section
contains a few hints to help the packaging.

By default, TSDuck is built with capabilities to check the availability of new versions on GitHub. The tsversion
command can also download and upgrade TSDuck from the binaries on GitHub. Packagers of Linux distros may
want to disable this since they may prefer to avoid mixing their TSDuck packages with the generic TSDuck
packages on GitHub. To disable this feature, build TSDuck with make NOGITHUB=1.

The way to build a package depends on the package management system. Usually, the build procedure includes
an installation on a temporary fake system root. To build TSDuck and install it on /temporary/fake/root, use the
following command:

$ make NOGITHUB=1 install SYSROOT=/temporary/fake/root

It is recommended to create two distinct packages: one for the TSDuck tools and plugins and one for the
development environment. The development package shall require the pre-installation of the tools package.

If you need to separately build TSDuck for each package, use make targets install-tools and install-devel
instead of install which installs everything.

$ make NOGITHUB=1 install-tools SYSROOT=/temporary/fake/root
$ make NOGITHUB=1 install-devel SYSROOT=/temporary/fake/root

1.1.2.11. Installing in non-standard locations

On systems where you have no administration privilege and consequently no right to use the standard installers,
you may want to manually install TSDuck is some arbitrary directory.

You have to rebuild TSDuck from the source repository and install it using a command like this one:

$ make install SYSPREFIX=$HOME/usr/local



Unlike many open source applications on Linux, the TSDuck binaries are independent from
the installation locations. There is no equivalent to ./configure --prefix …. The same
binaries can be installed in different locations, provided that the installation is consistent
(typically using make install …).

The TSDuck commands are located in the bin subdirectory and can be executed from here without any additional
setup. It is probably a good idea to add this bin directory in your PATH environment variable.

1.1.2.12. Using pkgconfig after installation

Applications may use the pkgconfig utility to reference the TSDuck library. A file named tsduck.pc is installed in the
appropriate directory.

However, pkgconfig has its own limitations, specifically regarding the configured compilation options.

TSDuck is a C++ library which requires a minimum revision of the language. Currently, the minimum revision is
C++17. All more recent revisions are supported. By default, most C++ compilers are based on older revisions.
Therefore, compiling an application using TSDuck with the default options fails. At least, -std=c++17 is required. To
avoid compilation problems with most applications, -std=c++17 is enforced in tsduck.pc.

However, some applications may need to explicitly specify an even more recent revision, such as -std=c++20,
which conflicts with -std=c++17 in tsduck.pc.

Version 3.38-3816 TSDuck Developer’s Guide

15

For that use case, you may install TSDuck without reference to the C++ revision using the following command:

$ make install NOPCSTD=1

The counterpart is that the applications must specify a -std option and the revision must be C++17 or more recent.

A generic solution would be that each library and the application all provide a minimum revision of the C++
language and pkgconfig would provide a synthetic -std option which fulfills all requirements. However, this
feature does not exist in pkgconfig, hence this trick.

1.1.2.13. Running from the build location

It is sometimes useful to run a TSDuck binary, tsp or any other, directly from the build directory, right after
compilation, without going through make install. This can be required for testing or debugging.

Because the binary directory name contains the host name, it is possible to build TSDuck using the same shared
source tree from various systems or virtual machines. All builds will coexist using distinct names under the bin
subdirectory.

For bash users who wish to include the binary directory in the PATH, simply "source" the script scripts/setenv.sh.

Example:

$. scripts/setenv.sh
$ which tsp
/Users/devel/tsduck/bin/release-x86_64-mymac/tsp

This script can also be used with option --display to display the actual path of the binary directory. The output
can be used in other scripts (including from any other shell than bash).

Example:

$ scripts/setenv.sh --display
/Users/devel/tsduck/bin/release-x86_64-mymac

Use scripts/setenv.sh --help for other options.

1.1.3. Building on Windows systems

On Windows systems, building a TSDuck installer simply means executing the PowerShell script pkg\nsis\build-
installer.ps1. More details and options are provided in the next sections.

1.1.3.1. Pre-requisites

Operations in this section must be run once, before building TSDuck for the first time one a given Windows
system. It should also be run to get up-to-date versions of the build tools and libraries which are used by TSDuck.

First, install Visual Studio Community Edition. This is the free version of Visual Studio. It can be downloaded here.
If you already have Visual Studio Enterprise Edition (the commercial version), it is fine, no need to install the
Community Edition.

Then, execute the PowerShell script scripts\install-prerequisites.ps1. It downloads and installs the requested
packages which are necessary to build TSDuck on Windows.

If you prefer to collect the various installers yourself, follow the links to NSIS downloads, Git downloads, SRT
downloads, RIST downloads, Dektec downloads, VATek downloads, Java downloads, Python downloads, Doxygen

TSDuck Developer’s Guide Version 3.38-3816

16

https://www.visualstudio.com/downloads/
http://nsis.sourceforge.net/Download
https://git-scm.com/download/win
https://github.com/Haivision/srt/releases/latest
https://github.com/Haivision/srt/releases/latest
https://github.com/tsduck/rist-installer/releases/latest
https://www.dektec.com/downloads/SDK
https://github.com/VisionAdvanceTechnologyInc/vatek_sdk_2/releases/latest
https://adoptium.net/
https://www.python.org/downloads/windows/
http://www.doxygen.org/download.html

downloads, Graphviz downloads.

TSDuck now requires a C++17 compliant compiler. C++17 support started with Visual Studio 2017 15.8. We
recommend to use Visual Studio 2022.

1.1.3.2. Building the binaries without installer

Execute the PowerShell script scripts\build.ps1. The TSDuck binaries, executables and DLL’s, are built in
directories named bin\<target>-<platform>, for instance bin\Release-x64 or bin\Debug-Win32.

To cleanup the repository tree and return to a pristine source state, execute the PowerShell script
scripts\cleanup.ps1.

1.1.3.3. Building the Windows installers

Execute the PowerShell script pkg\nsis\build-installer.ps1. By default, only the 64-bit installer is built. To build
the two installers, for 32-bit and 64-bit systems, run the build script from a PowerShell window and add the option
-Win32.

There is no need to build the TSDuck binaries before building the installers. Building the binaries, is part of the
installer build.

All installation packages are dropped into the subdirectory pkg/installers. The packages are not deleted by the
cleanup procedures. They are not pushed into the git repository either.

1.1.3.4. Installing in non-standard locations

On systems where you have no administration privilege and consequently no right to use the standard installers,
you may want to manually install TSDuck is some arbitrary directory.

On Windows systems, a so-called portable package is built with the installers. This is a zip archive file which can be
expanded anywhere. It is automatically built by pkg\nsis\build-installer.ps1, in addition to the executable
installer.

1.1.3.5. Running from the build location

It is sometimes useful to run a TSDuck binary, tsp or any other, directly from the build directory, right after
compilation. This can be required for testing or debugging.

The commands can be run using their complete path without additional setup. For instance, to run the released
64-bit version of tsp, use:

PS D:\tsduck> bin\Release-x64\tsp.exe --version
tsp: TSDuck - The MPEG Transport Stream Toolkit - version 3.12-730

For other combinations (release vs. debug and 32 vs. 64 bits), the paths from the repository root are:

bin\Release-x64\tsp.exe
bin\Release-Win32\tsp.exe
bin\Debug-x64\tsp.exe
bin\Debug-Win32\tsp.exe

1.1.4. Installer files summary

The following list summarizes the packages which are built and dropped into the pkg/installers directory,
through a few examples, assuming that the current version of TSDuck is 3.37-3670.

Version 3.38-3816 TSDuck Developer’s Guide

17

http://www.doxygen.org/download.html
https://graphviz.gitlab.io/_pages/Download/Download_windows.html

tsduck_3.37-3670.ubuntu23_amd64.deb Binary package for 64-bit Ubuntu 23.x

tsduck_3.37-3670.ubuntu23_arm64.deb Binary package for Arm 64-bit Ubuntu 23.x

tsduck_3.37-3670.debian12_amd64.deb Binary package for 64-bit Debian 12

tsduck_3.37-3670.raspbian12_armhf.deb Binary package for 32-bit Raspbian 12 (Raspberry Pi)

tsduck-3.37-3670.el9.x86_64.rpm Binary package for 64-bit Red Hat 9.x and clones

tsduck-3.37-3670.el9.src.rpm Source package for Red Hat and clones

tsduck-3.37-3670.fc39.x86_64.rpm Binary package for 64-bit Fedora 39

tsduck-3.37-3670.fc39.src.rpm Source package for Fedora

tsduck-dev_3.37-3670.ubuntu23_amd64.deb Development package for 64-bit Ubuntu 23.x

tsduck-dev_3.37-3670.ubuntu23_arm64.deb Development package for Arm 64-bit Ubuntu 23.x

tsduck-dev_3.37-3670.debian12_amd64.deb Development package for 64-bit Debian 12

tsduck-dev_3.37-3670.raspbian12_armhf.deb Development package for 32-bit Raspbian (Raspberry Pi)

tsduck-devel-3.37-3670.el9.x86_64.rpm Development package for 64-bit Red Hat 9.x and clones

tsduck-devel-3.37-3670.fc39.x86_64.rpm Development package for 64-bit Fedora 39

TSDuck-Win32-3.37-3670.exe Binary installer for 32-bit Windows

TSDuck-Win64-3.37-3670.exe Binary installer for 64-bit Windows

TSDuck-Win32-3.37-3670-Portable.zip Portable package for 32-bit Windows

TSDuck-Win64-3.37-3670-Portable.zip Portable package for 64-bit Windows

On Linux systems, there are two different packages. The package tsduck contains the tools and plugins. This is the
only required package if you just need to use TSDuck. The package named tsduck-devel (Red Hat family) or
tsduck-dev (Debian family) contains the development environment. It is useful only to build third-party
applications which use the TSDuck library.

On Windows systems, there is only one binary installer which contains the tools, plugins, documentation and
development environment. The user can select which components shall be installed. The development
environment is unselected by default.

On macOS systems, the Homebrew package tsduck installs all components.

1.2. Building the documentation

There are three sets of TSDuck documents:

1. TSDuck User’s Guide (HTML and PDF)

2. TSDuck Developer’s Guide (HTML and PDF)

3. TSDuck Programming Reference (HTML only)

The first two documents are written in Asciidoc format. Their HTML and PDF versions are built using Asciidoctor.
The two HTML files are large standalone files, without reference to any other local file; they can be safely copied
without breaking the navigation.

These two guides are installed with TSDuck on UNIX systems (Linux, macOS, BSD) and Windows (HTML version
only).

The TSDuck Programming Reference contains the documentation of all public classes which can be used by
applications in C++, Java, or Python. This reference is built using Doxygen.

TSDuck Developer’s Guide Version 3.38-3816

18

https://asciidoc.org
https://docs.asciidoctor.org
https://www.doxygen.nl


Asciidoctor and Doxygen are automatically installed by the scripts install-prerequisites.sh
on UNIX systems (Linux, macOS, BSD) and install-prerequisites.ps1 on Windows.

On large libraries, Doxygen is extremely verbose. The TSDuck Programming Reference is made of a large number
of HTML files, more than 14,000 files and directories. It also takes some time to generate. Therefore, the
Programming Reference is neither built by default nor installed with the rest of TSDuck. Every night, a fresh copy
is generated and published online at https://tsduck.io/doxy.

1.2.1. Building on UNIX systems (Linux, macOS, BSD)

The user’s guide and the developer’s guide are built using the target docs. The HTML and PDF files are built in
subdirectory bin/doc.

$ make docs

Because the two guides are installed with the rest of TSDuck, they are automatically rebuilt as part of make
install.

The following targets are also available to build a subset of the guides:

userguide-html Build the user’s guide HTML version

userguide-pdf Build the user’s guide PDF version

userguide Build the user’s guide HTML and PDF versions

open-userguide-
html

Build the user’s guide HTML version and opens it with the default HTML viewer

open-userguide-pdf Build the user’s guide PDF version and opens it with the default PDF viewer

open-userguide Build the user’s guide HTML and PDF versions and opens them with their default viewers

devguide-html Build the developer’s guide HTML version

devguide-pdf Build the developer’s guide PDF version

devguide Build the developer’s guide HTML and PDF versions

open-devguide-html Build the developer’s guide HTML version and opens it with the default HTML viewer

open-devguide-pdf Build the developer’s guide PDF version and opens it with the default PDF viewer

open-devguide Build the developer’s guide HTML and PDF versions and opens them with their default
viewers

docs Build the four document, user and developer, HTML and PDF

docs-html Build the user and developer’s guide in HTML format

docs-pdf Build the user and developer’s guide in PDF format

The programming reference is built using the target doxygen.

$ make doxygen

The set of files is built in subdirectory bin/doxy/html.

Version 3.38-3816 TSDuck Developer’s Guide

19

https://tsduck.io/doxy

1.2.2. Building on Windows

The user’s guide and the developer’s guide are built using the PowerShell script doc\build-doc.ps1. The HTML and
PDF files are built in subdirectory bin\doc. By default, they are automatically opened using the default HTML and
PDF viewers of the system.

Because the two guides are installed with the rest of TSDuck, this script is automatically executed as part of the
script pkg\nsis\build-installer.ps1.

The programming reference is built using the PowerShell script doc\doxy\build-doxygen.ps1. The set of files is
built in subdirectory bin\doxy\html. By default, the start page is automatically opened using the default HTML
viewer of the system.

When used in an automation system, the two scripts doc\build-doc.ps1 and pkg\nsis\build-installer.ps1 can be
called with options -NoOpen -NoPause to skip the opening of documents using the default viewers and exit without
waiting for a user to close the command window.

1.3. Installing TSDuck

TSDuck can be installed on Windows, Linux, macOS and BSD systems.

1.3.1. Installing on Windows

On Windows systems, TSDuck can be installed using a binary installer (traditional method) or using the winget
package manager (modern method).

1.3.1.1. Using winget

TSDuck is installable on Windows systems using the winget package manager.

winget is now the preferred package manager for open source and third-party products on Windows systems. It is
documented and supported by Microsoft. It should be pre-installed on all recent Windows 10 and Windows 11
systems.

The TSDuck installation command is simply:

PS C:\> winget install tsduck

1.3.1.2. Download an installer

Executable binary installers for the latest TSDuck version are available for 64-bit Windows on Intel systems.

All tools, plugins and development environments are in the same installer. Running the installer provides several
options:

• Tools & Plugins

• Documentation

• Python Bindings (optional)

• Java Bindings (optional)

• C++ Development (optional)

Older versions of TSDuck remain available on GitHub.

Nightly builds and pre-releases can be found on the TSDuck Web site.

To automate the installation, the executable binary installer can be run from the command line or a script.

TSDuck Developer’s Guide Version 3.38-3816

20

https://learn.microsoft.com/en-us/windows/package-manager/winget/
https://tsduck.io/download/tsduck
https://github.com/tsduck/tsduck/releases
https://tsduck.io/download/prerelease

• The option /S means "silent". No window is displayed, no user interaction is possible.

• The option /all=true means install all options. By default, only the tools, plugins and documentation are
installed. In case of upgrade over an existing installation, the default is to upgrade the same options as in the
previous installation.

1.3.2. Installing on macOS

TSDuck is installable on macOS systems using Homebrew, the package manager for open-source projects on
macOS.

If you have never used Homebrew on your system, you can install it using the following command (which can also
be found on the Homebrew home page):

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Once Homebrew is set up, you can install TSDuck using:

$ brew install tsduck

All tools, plugins and development environments are installed.

After installation, to upgrade to latest version:

$ brew update
$ brew upgrade tsduck

When Homebrew upgrades packages, the old versions are not removed. The new versions are just added. After a
while, megabytes of outdated packages accumulate on disk. To remove outdated packages:

$ brew cleanup

To uninstall TSDuck:

$ brew uninstall tsduck

If you would like to install the lastest test version (HEAD version) use the following command. Be aware that it
takes time since TSDuck is locally recompiled.

$ brew install --HEAD tsduck

1.3.3. Installing on Linux

Pre-build packages for the latest TSDuck version are available for the following configurations:

• Fedora (64-bit Intel)

• Ubuntu (64-bit Intel and Arm)

• RedHat, CentOS, Alma Linux (64-bit Intel)

• Debian (64-bit Intel)

• Raspbian (32-Bit Arm, Raspberry Pi)

Version 3.38-3816 TSDuck Developer’s Guide

21

https://brew.sh
https://brew.sh
https://tsduck.io/download/tsduck

The type of package, .rpm or .deb, depends on the configuration. The pre-built packages are provided for the
latest version of each distro only.

For each distro, two packages exist: the tsduck package installs the TSDuck commands, plugins, Java and Python
bindings, the tsduck-devel or tsduck-dev package installs the development environment for C++ programmers.

Older versions of TSDuck remain available on GitHub. Nightly builds and pre-releases for Ubuntu can be found on
the TSDuck Web site.

To use older versions of the above distros, rebuilding the packages is easy:

$ make installer

To install TSDuck on other types of Linux systems for which no package is available:

$ make -j10 default docs-html
$ sudo make install

More details on how to build TSDuck are available in section 1.1.

1.3.4. Installing on BSD systems

There is currently no installer for FreeBSD, OpenBSD, NetBSD, DragonFlyBSD. You need to build and install as
follow:

$ gmake -j10 default docs-html
$ sudo gmake install

Note that GNU Make (gmake) shall be used instead of the standard BSD make.

TSDuck Developer’s Guide Version 3.38-3816

22

https://github.com/tsduck/tsduck/releases
https://tsduck.io/download/prerelease

Chapter 2. Developing Applications with TSDuck
The TSDuck library is made of a large number of general-purpose C++ classes for Digital TV. They can be used by
any application to manipulate MPEG transport streams, the signalization, and various data which are carried in
MPEG-TS.

A subset of high-level features is also accessible from Java and Python applications.

This chapter describes how to use the TSDuck library in third-party applications.

It also describes how to develop TSDuck plugins and TSDuck extensions outside the TSDuck project. Although we
encourage open source contributions to enrich the project, it can be useful to extend TSDuck in private
applications to test proprietary features.

2.1. Building an application with the TSDuck library

2.1.1. Pre-requisites

To be able to build applications or tsp plugins with the TSDuck library, you must install the TSDuck development
environment first.

• On Windows systems, you must select the optional "Development" component during the installation.

• On Fedora, Red Hat and clones, you must install the package tsduck-devel.

• On Ubuntu and the Debian family, you must install the package tsduck-dev.

• On macOS systems, the development environment is always installed with TSDuck using Homebrew.

• If you build TSDuck from sources, use make install (which is equivalent to make install-tools install-devel).

2.1.2. Building applications on UNIX systems (Linux, macOS, BSD)

The command tsconfig generates the appropriate build options for the current operating system. See the TSDuck
user’s guide for more details on tsconfig.

The following sample makefile illustrates the creation of a simple application named myexec using one single
source file myexec.cpp.

CXXFLAGS += $(shell tsconfig --cflags)
LDLIBS += $(shell tsconfig --libs)

default: myexec

This is as simple as that.

Just run make to build the application.

$ make

C++ language level

By default, the command tsconfig --cflags forces C++17 as level of C++ language standard. If your application
requires a more recent level, define the environment variable TS_NOSTDCPP to any non-empty value. This disables
the C++ standard option in tsconfig. The application shall then define its own C++ standard in its command line.
This user-specified C++ standard cannot be lower than C++17.

Version 3.38-3816 TSDuck Developer’s Guide

23

Alternatively, the command tsconfig --nostdcpp --cflags can be used to omit the C++ standard from the
compilation options without defining the environment variable TS_NOSTDCPP.

2.1.3. Building applications on Windows

The "Development" option of the TSDuck installer provides the build environment for Visual Studio 2022, in debug
and release mode, for 64-bit Intel platforms. It may be compatible with Visual Studio 2019 or earlier, but without
guarantee.

The environment variable TSDUCK is defined to the root of the TSDuck installation tree. A Visual Studio property file
named tsduck.props is installed here. It provides all definitions and options to use the TSDuck library.

Create the solution and projects for your application. Then, manually edit the project file, named for instance
app.vcxproj, and insert the following line just before the final </Project> closing tag:

<Import Project="$(TSDUCK)\tsduck.props"/>

Then build your project normally.

C++ language level

By default, the property file tsduck.props forces C++17 as level of C++ language standard. If your application
requires a more recent level, define the environment variable TS_NOSTDCPP to any non-empty value. This disables
the C++ standard option in tsduck.props. The application shall then define its own C++ standard in its project files.
This user-specified C++ standard cannot be lower than C++17.

2.2. Overview of the TSDuck library

The TSDuck library contains general-purpose C++ classes and utilities to handle MPEG transport streams.

For programming details, see the reference documentation online (doxygen-generated).

Roughly, the TSDuck library provides two categories of features:

• Operating system abstraction layer to make the application code fully portable between heterogeneous
platforms. This is similar to frameworks such as Qt, but much more lightweight.

• Handling of MPEG transport streams and signalization, including DVB, ATSC and ISDB features.



In early versions of TSDuck, the OS abstraction layer contained many more classes. Starting
with C++11 and C++17, the standard library of the language was enriched with many more
system features. Some low-level TSDuck classes became obsolete. The code was migrated to
use standard C++17 features and the corresponding low-level classes were removed from
TSDuck.

All C++ declarations are located inside the namespace ts, either directly within ts or inside inner namespaces. All
preprocessor’s macros are named with prefix TS_.

2.2.1. C++ features

2.2.1.1. Portability issues

The file tsPlatform.h contains some very low level definitions such as macros defining the environment
(processor, compiler, operating system, endianness), byte and bit manipulation, etc.

TSDuck Developer’s Guide Version 3.38-3816

24

https://tsduck.io/doxy/

2.2.1.2. C++ strings

C and C++ strings are made of 8-bit characters which are notoriously unable to represent international character
sets. The usage of std::string with the TSDuck library is discouraged in favor of Unicode strings.

2.2.1.3. Unicode strings

The class ts::UString implements Java-like Unicode strings. Each character uses 16 bits of storage. Formally,
ts::UString uses UTF-16 representation. This means that all characters from all modern languages can be
represented as one single character. Characters from archaic languages may need two UTF-16 values, called a
"surrogate pair".

Technically, ts::UString is a subclass of std::u16string. So any operation on standard C++ strings is also available
to ts::UString. But many more operations have been added to manipulate Unicode strings.

For consistency, the type ts::UChar is an alias for char16_t. The header file tsUChar.h defines some utility functions
on ts::UChar. It also defines constants for most Unicode characters like ts::COLON or more complex ones such as
ts::LATIN_CAPITAL_LETTER_A_WITH_ACUTE, among hundredths of others.

Some interesting features in class ts::UString are:

• Explicit and implicit conversions between UTF-8 and UTF-16.

• Including automatic conversion to UTF-8 when writing to text streams.

• Conversions with DVB and ARIB character sets.

• Conversions with HTML encoding.

• Management of "display width", that is to say the amount of space which is used when the string is displayed.
This can be different from the string length in the presence of combining diacritical characters or surrogate
pairs.

• String padding, trimming, truncation, justification, case conversions.

• Substring, prefix or suffix detection, removal or substitution.

• Splitting and joining strings based on separators or line widths.

• Reading or writing text lines from or to a text file.

• Data formatting using format(), Format(), Decimal(), Hexa(), Dump().

• Data scanning using scan().

Unicode strings can be converted to and from DVB or ARIB (Japan) strings. Most DVB-defined character sets are
implemented (see the classes ts::Charset and ts::DVBCharset) and recognized when a string is read from a
descriptor. When a string is serialized into a binary descriptor, the most appropriate DVB character set is used. In
practice, a few known DVB character sets are used and, when the string cannot be encoded in any of them, UTF-8
is used (UTF-8 is always a valid DVB character set).

2.2.1.4. Binary data

The class ts::ByteBlock represents a raw block of bytes. It is a subclass of std::vector<uint8_t> and consequently
benefits from all standard vector operations. It also adds useful methods for data serialization or deserialization in
any byte order.

For data serialization or deserialization over arbitrary memory areas, the header file tsMemory.h provides low-level
functions to access integer values of 8, 16, 24, 32, 40, 48 and 64 bits in any byte order.

The class ts::Buffer provides a higher-level abstraction layer over a memory area to parse or generate
bitstreams. It gives access to data of any bit-size at any bit position, any endianness, either as a continuous stream
or seeking at random bit positions.

Version 3.38-3816 TSDuck Developer’s Guide

25

The principles of the C++ class ts::Buffer were freely inspired by the Java class java.nio.ByteBuffer. There are
differences between the two but the main principles are similar.

Its subclass ts::PSIBuffer provides primitives to serialize and deserialize MPEG and DVB structures such as list of
descriptors, DVB, ARIB and ATSC strings or "Modified Julian Dates".

2.2.1.5. Singletons and static data

The singleton design pattern is simple in theory, but not so simple to implement correctly in practice. The TSDuck
library encapsulates the implementation difficulties using the two macros TS_DECLARE_SINGLETON() (in a header file)
and TS_DEFINE_SINGLETON() (in the corresponding compilation unit).

Similarly, using static data can be a nightmare because it is impossible to manage the initialization order of
modules in C++. Again, the TSDuck library encapsulates these implementation difficulties using the macro
TS_STATIC_INSTANCE(). This is a variant of the singleton pattern, privately used inside a compilation unit.

2.2.1.6. Error reporting

All TSDuck classes use a consistent error reporting mechanism through the ts::Report abstract class.

This interface defines several levels of severity in the type ts::Severity, ranging from ts::Severity::Debug to
ts::Severity::Fatal. Each instance of ts::Report defines which levels of message are reported to the user. This is
usually triggered by command-line options such as --verbose or --debug.

Most classes or methods from the TSDuck library use a reference to an instance of ts::Report to report messages
and errors. The actual reporting object is often built at application level and then propagated to all layers of code.

Some interesting subclasses of ts::Report are:

• ts::CerrReport, a singleton which reports errors to std::cerr. The macro CERR can be used as a shortcut to the
instance of the singleton.

• ts::NullReport, a singleton which drops all messages. The macro NULLREP can be used as a shortcut to the
instance of the singleton.

• ts::ReportFile which logs messages in a file. It can be made thread-safe using a ts::ThreadSafety value as
template argument.

• ts::ReportBuffer which logs messages in a memory buffer. It can be made thread-safe using a
ts::ThreadSafety value as template argument.

• ts::Args (see section 2.2.1.9) which defines the syntax and handling of command line arguments. This is the
typical instance of ts::Report which is used at application-level.

• ts::Plugin, the superclass of all tsp plugins. A plugin reports its messages directly in its own instance. Each
tsp plugin executes in a separate thread and asynchronously logs messages without slowing down the
plugin’s thread.

2.2.1.7. Exceptions

As a general rule, TSDuck prefers the usage of error reporting interface and error status over exceptions.
However, for a limited number of unrecoverable conditions which should never occur in practice, exceptions are
used.

All TSDuck exceptions inherit from the superclass ts::Exception. An instance of this exception is able to embed an
error message and an optional system error code.

Each specific exception should be a subclass of ts::Exception. Instead of rewriting the subclass code, applications
should use the macro TS_DECLARE_EXCEPTION().

TSDuck Developer’s Guide Version 3.38-3816

26

2.2.1.8. Pseudo-enumeration data

An instance of the class ts::Enumeration associates a list of integer or enum values with strings. It can be used to
display meaningful strings instead of integer values.

It is even more useful to decode command line arguments. When an option accepts a predefined list of values,
the input string can be either an integer value or a name. When it is a name, it can even be abbreviated as long as
it is not ambiguous in the corresponding ts::Enumeration. This is transparent for the application which receives
the corresponding integer value.

2.2.1.9. Command-line arguments

The class ts::Args implements a generic handling of command line arguments.

Each application typically defines its own subclass of ts::Args. A plugin is always a subclass of ts::Args, through
the intermediate class ts::Plugin.

A subclass of ts::Args defines the command line syntax and the corresponding help text. The superclass ts::Args
automatically parses the command line, reports errors and handle common options such as --help or --version.

The value of command line options can be free strings, integer values or enumeration values. Integer values are
recognized in decimal or hexadecimal form (prefix 0x) and thousands separators (‘,’) which are present for clarity
are ignored. Enumeration values are handled through ts::Enumeration.

2.2.1.10. XML data

The TSDuck library embeds an XML parser and several classes to handle a DOM structure.

See the class ts::xml::Node, the abstract base class of the DOM hierarchy.

2.2.1.11. JSON data

The TSDuck library embeds a JSON parser and several classes to handle JSON values.

See the class ts::json::Value, the abstract base class of the JSON hierarchy.

2.2.2. Cryptography

The TSDuck library contains a few cryptographic classes. The TSDuck library is not a cryptographic library and will
never be. Cryptography is a serious matter which should be left to cryptographers.

Some transport stream processing operations require some cryptography, essentially block ciphers and hash
functions. The TSDuck library proposes an homogeneous API over them. Standard cryptographic primitives are
implemented using the standard system libraries, OpenSSL on UNIX systems (Linux, macOS, BSD), BCrypt on
Windows. Less standard primitives are directly implemented in TSDuck.

The abstract class ts::BlockCipher is the root of a hierarchy of symmetric cryptography classes, including chaining
modes. The main block cipher classes are ts::AES128, ts::AES256, ts::TDES and ts::DES.


DES is an obsolete and insecure algorithm. TDES (a.k.a. 3-DES or Triple DES) is also
deprecated. However, the two are still used in some ATSC Digital TV systems.

Chaining modes are template classes which inherit from the abstract class ts::CipherChaining. The template
parameter is a block cipher class. The main chaining modes are ts::ECB, ts::CBC, various flavors of ts::CTSx or
more exotic modes from the DTV world such as ts::DVS042.

Additionally, ts::CipherChaining is also a subclass of ts::BlockCipher because it remains a symmetric cipher. So,
ciphers like ts::AES or ts::CBC<ts::AES> can be used through the same ts::BlockCipher interface.

Version 3.38-3816 TSDuck Developer’s Guide

27

The class ts::Scrambling implements DVB-CSA-2, the Digital Video Broadcasting Common Scrambling Algorithm.
This implementation is older than the open-source libdvbcsa library and is probably less efficient.

The abstract class ts::Hash is the root of a hierarchy of hash functions classes. The main hash functions are
ts::SHA1, ts::SHA256 or ts::SHA512.

The abstract class ts::RandomGenerator is the root of pseudo-random generators.

The subclass ts::SystemRandomGenerator is a portable interface to the system-provided PRNG. Usually, this is not
the best PRNG on earth, but it is fine for most usages in TSDuck applications. For more critical usages (such as
encryption key generation), use ts::BetterSystemRandomGenerator. This PRNG class uses
ts::SystemRandomGenerator with an additional security layer.

The class ts::Xoshiro256ss implements the Xoshiro256** PRNG. It is a fast and deterministic PRNG, with a low
level of security. The same seed will always produce the same pseudo-random sequence. It can be used in cases
where many random numbers are required, without strong security criteria. It is typically used in fuzzing tools.

2.2.3. Operating system features

2.2.3.1. Miscelleaneous system utilities

The header files tsSysUtils.h, tsFileUtils.h, tsEnvironment.h, declare utility functions on top of the operating
system.

With the introduction of C++17, many of these functions have been removed in favor of new standard functions.
However, a number of additional features manipulate:

• File paths.

• File attributes.

• Creating or deleting files and directories.

• Environment variables.

• Process identifiers.

• System error codes.

2.2.3.2. Time

The class ts::Time is a portable implementation of time (both local and UTC time).

Many operations are provided, such as:

• Getting system time in various forms.

• Arithmetic operations on time.

• Analysing and building time values.

• Formatting time values as strings.

2.2.3.3. Multithreading

TSDuck is heavily multi-threaded. The abstract class ts::Thread manages a thread. To define an actual thread,
derive this class and implement the virtual method main().

The class ts::ThreadAttributes contains all mandatory or optional attributes of a thead. An application typically
builds a ts::ThreadAttributes object and then creates threads using these attributes.

In earlier versions of TSDuck, synchronization primitives used to be implemented through specific classes
(ts::Mutex, ts::Condition). They are now removed and new C++11 classes such as std::mutex and

TSDuck Developer’s Guide Version 3.38-3816

28

https://www.videolan.org/developers/libdvbcsa.html

std::condition_variable are used instead.

Note that the C++11 class std::thread is not used. Its API is too limited to be useable in complex environments: it
does not allow to customize the priority or the stack size before the creation of the thread. Therefore, TSDuck
exclusively uses ts::Thread and ts::ThreadAttributes instead.

TSDuck relies on C++ mechanisms to track the usage of resources. Standard classes such as std::lock_guard or
std::unique_lock are used to ensure that no dangling lock is lost through the guard design pattern.

2.2.3.4. Virtual memory

The class ts::ResidentBuffer implements a buffer which is locked in physical memory, preventing paging or
swapping on this buffer. This is useful for large data buffers with high performance constraints.

This is a template class. The template parameter is the type of the elementary data in the buffer.

The core data of the tsp processor is a ts::ResidentBuffer<ts::TSPacket>. The incoming packets are directly
written into this buffer by the input plugin. Each packet processing plugin directly reads and writes the packets
here. And the output plugin reads the packet there, at the very same place they were written by the input plugin.
Given that this global buffer is locked in physical memory, the best performances are guaranteed.

Note however that most operating systems require that the application has privileges to lock physical memory.

2.2.3.5. Processes

To track potential memory leaks and the impact of the application on the system, the class ts::SystemMonitor
creates a background thread which reports the process metrics of the application at regular intervals.

The class ts::ForkPipe is a portable and convenient way to create a process running a specific command and
creates an outgoing pipe from the calling application to the standard input of the created process. The pipe is
open in binary mode (when it makes sense for the operating system) and can be used to pass an entire transport
stream when necessary.

2.2.3.6. Networking

The classes ts::IPv4Address and ts::IPv4SocketAddress define an IPv4 address and a corresponding socket
address (an IPv4 address and a port number). Host name resolution and multicast are supported.

Equivalent classes exist for IPv6 and MAC (Ethernet addresses).

The classes ts::TCPSocket and ts::UDPSocket implement TCP/IP and UDP/IP endpoints.

The class ts::UDPSocket can be used directly to send and receive datagrams. Multicast is supported.

The class ts::TCPSocket can be used only through two subclasses. The subclass ts::TCPConnection is a TCP/IP
communication endpoint, either on client or server side. It is used to send or receive data streams. The subclass
ts::TCPServer is used to implement a TCP server. It accepts incoming client connections and initiates a
ts::TCPConnection for each new connection. On the client side, the class ts::TCPConnection is directly used to
connect to the server.

Subclasses of ts::TCPConnection are used to implement specific protocols on top of TCP/IP. Currently, the available
subclasses are ts::TelnetConnection and ts::tlv::Connection. The latter is used to handle communications using
the "DVB SimulCrypt head-end protocols". See section 2.2.6 for more details.

The class ts::WebRequest performs simple Web requests using HTTP, HTTPS or FTP. Using a URL, the result can be
downloaded in memory or in a file. Multiple redirections and SSL/TLS are automatically handled. This class is built
on top of native system libraries, libcurl on UNIX systems (Linux, macOS, BSD), WinInet on Windows.

Version 3.38-3816 TSDuck Developer’s Guide

29

2.2.3.7. Shared libraries

The TSDuck library contains classes to load shared libraries (.dll on Windows, .so on Linux and BSD, .dylib on
macOS) and lookup symbols inside them in a portable way. These classes are typically used to load tsp plugins but
can be used in any application.

The class ts::SharedLibrary manipulates any type of shared library.

The subclass ts::ApplicationSharedLibrary searches a shared library using TSDuck rules: if the file is not found
"as it is", an optional prefix and a list of directories are used. This is how, on Windows for instance, searching the
shared library named zap will end up loading the file tsplugin_zap.dll in the same directory as the application
executable file.

2.2.3.8. Smart-card interface

Applications which interact with smart-cards shall use the PC/SC interface. PC/SC is a standard interface which was
originally developped for Windows but which is also available on Linux and macOS.

The TSDuck library does not embed or hide PC/SC but it provides a few utilities like transmitting an APDU and read
the response in one single function or searching a smart-card with some characteristics in the ATR from all
connected smart-cards.

All these utilities are grouped in the namespace ts::pcsc.

2.2.3.9. Windows specificities

The class ts::COM provides a portable and reliable way to make sure that the Common Object Model (COM) is
properly initialized and terminated on Windows systems. This class is defined on all platforms but does nothing
on non-Windows systems. It is consequently safe to use it everywhere without tedious conditional compilation
directives.

Other classes manipulate Windows-specific objects and are not available on non-Windows systems.

The template class ts::ComPtr is the equivalent of a smart pointer for COM objects. The reference count of a COM
object is properly incremented and decremented when the COM object is manipulated through a ts::ComPtr. The
COM object is automatically released when no more reference exists.

There is little advantage to develop an intrinsicly non-portable COM object class. However, in order to access
tuner devices, TSDuck needed a few custom internal COM classes to interact with the DirectShow framework.
These internal classes needed some COM support functions which are available to applications (just in case…)

2.2.4. MPEG features

2.2.4.1. Transport streams

The class ts::TSPacket defines a transport stream packet. It is in fact a flat structure which occupies exactly 188
bytes in memory. It is safe to use arrays or vectors of ts::TSPacket. The packets are guaranteed to be contiguous
in memory.

The class ts::TSPacket also adds many operations on the TS packet to read or modify properties like the PID (type
ts::PID), the continuity counters or deeper structures like PCR, DTS or PTS.

The class ts::TransportStreamId contains the identification of an MPEG/DVB transport stream.

The class ts::Service contains all possible properties of a DVB service. Not all properties need to be set at the
same time. Each property can be individually set, cleared or queried.

Transport stream files are implemented by classes ts::TSFileInput and ts::TSFileOutput. They respectively read
and write transport stream files with specific features such as repeating the reading of a part of the file.

TSDuck Developer’s Guide Version 3.38-3816

30

The subclass ts::TSFileInputBuffered provides additional, but limited, capabilities to seek forward and backward
on non-seekable files such as pipes.

The subclass ts::TSFileOutputResync adds resynchronization capabilities on continuity counters and PID’s.

The class ts::TSAnalyzer consumes all TS packets from a transport stream and analyzes virtually everything from
the stream. This is the class which is used by the command tsanalyze and the plugin analyze to collect the vast
amount of information it reports.

The class ts::PCRAnalyzer is a useful tool to evaluate the bitrate of a transport stream. It performs the analysis of
the Program Clock Reference (PCR) which are present in the transport stream in order to evaluate the bitrate of
the stream. If PCR are not found, the class can also use Decoding Time Stamps (DTS) to evaluate the bitrate. This is
less precise than PCR but can be used as a backup.

2.2.4.2. Audio, video and PES packets

The TSDuck library provides classes to manipulate PES packets and a few audio and video attributes. These
features are limited to the analysis of a transport stream. There is no video or audio decoding features.
Specialized libraries exist for this and are out of scope for TSDuck.

The class ts::PESPacket implements a PES packet and can manipulate its attributes, header and payload.

The class ts::PESDemux extracts PES packets from a transport stream. It can also notify the application of the
changes in audio or video attributes.

The abstract class ts::AbstractAudioVideoAttributes is the root of a hierarchy of classes which contains attributes
for audio or video streams. Currently, specialized classes exist for MPEG-2 video, AVC/H.264, HEVC/H.265,
VVC/H.266 video, MPEG-2 audio and AC-3 audio.

The class ts::AVCParser performs the parsing of an AVC, HEVC, or VVC bitstream.

2.2.5. Signalization

The MPEG signalization is built from sections, tables and descriptors. All these concepts are implemented in the
TSDuck library.

2.2.5.1. Binary, specialized and XML formats

Signalization objects, sections, tables and descriptors, can be manipulated in several formats: binary objects,
specialized classes and XML.

Tables in JSON format are also supported through automatic XML-to-JSON translation.

The classes ts::Section, ts::BinaryTable and ts::Descriptor implement binary forms of the signalization objects.

A binary table are made of a collection of sections. A binary table is valid when all binary sections are present.
Each section contains its section number in the table and the total expected number of sections inside the table.

All sections and descriptors can be represented by the classes ts::Section and ts::Descriptor. They simply
contain the complete binary content of the object and can manipulate the various components. An instance of
ts::Section stores the table_id and manipulates the various components of the section header. For long sections,
the final CRC32 can be checked for consistency or recomputed after modification of the section content.

Tables can be stored in binary files. The format of these files is quite simple. They just contain raw binary sections,
without any encapsulation. Tables can also be stored in XML or JSON files. The class ts::SectionFile reads and
writes tables or section from files, independently of the format, either a binary section file or an XML file.

Tables and descriptors can also be manipulated using specialized classes such as ts::PAT or ts::PMT for tables and
ts::ContentDescriptor or ts::ShortEventDescriptor for descriptors.

All specialized classes inherit from a common abstract root named ts::AbstractSignalization. All descriptors

Version 3.38-3816 TSDuck Developer’s Guide

31

inherit from the intemediate class ts::AbstractDescriptor. All tables inherit from the intemediate class
ts::AbstractTable. Tables with long sections inherit from ts::AbstractLongTable.

Most tables and descriptors are implemented, from MPEG, DVB, ATSC, ISDB and a few private descriptors.
Unimplemented descriptors shall be manipulated in binary form (or be implemented…)

Binary tables or descriptors are converted from or to specialized classes using serialize() and deserialize()
methods. The validity of a binary or specialized object can be checked using the isValid() method.

Sample deserialization code:

void someFunction(ts::DuckContext& duck, const ts::BinaryTable& table)
{
 ts::PMT pmt;
 if (table.isValid() && table.tableId() == ts::TID_PMT) {
 pmt.deserialize(duck, table);
 if (pmt.isValid()) {
 processPMT(pmt);
 }
 }
}

The deserialization can also be done in the constructor. And the validity and table_id checking is done anyway in
the deserialization. So, the previous code can be simplified as:

void someFunction(ts::DuckContext& duck, const ts::BinaryTable& table)
{
 ts::PMT pmt(duck, table);
 if (pmt.isValid()) {
 processPMT(pmt);
 }
}

Sample serialization:

ts::DuckContext duck;

ts::PMT pmt;
pmt.version = 12;
pmt.service_id = 0x1234;
// Declare one component, PID 0x345, carrying H.264/AVC video.
pmt.streams[0x345].stream_type = ts::ST_AVC_AUDIO;

ts::BinaryTable table;
pmt.serialize(duck, table);

Note that an instance of the class ts::DuckContext can store various information about the way to interpret
incorrect signalization or preferences. Its default value is appropriate for a standard PSI/SI processing.

Each time the instance of ts::DuckContext is used, it accumulates information. For instance, if it is used to
deserialize an ATSC MGT table, the information that the TS is an ATSC one is retained. Later, if the same instance
of ts::DuckContext is used to deserialize a descriptor for which there is an ambiguity (the tag is used in two
standards for instance), the ATSC version of the descriptor will be used.

It is also possible to automatically define and load command line options to preset the state of the instance of
ts::DuckContext. See section 2.2.5.3 for more details.

Finally, specialized classes for tables and descriptors can be converted to and from XML using the methods

TSDuck Developer’s Guide Version 3.38-3816

32

toXML() and fromXML().

These methods are typically used by the class ts::SectionFile which represents a file containing sections and
tables in binary or XML format. The class can be used to load a set of tables in XML format or to store table objects
in XML format.

The class ts::SectionFile is the core of the tstabcomp utility, the tables compiler (or decompiler).

2.2.5.2. Demux and packetization

Signalization objects can be extracted from transport streams using the class ts::SectionDemux and inserted back
into transport streams using the class ts::Packetizer. These two classes also have specialized subclasses.

An instance of ts::SectionDemux can extract sections or complete tables in binary form.

Tables with long sections are usually cycled. A given table with a given version number and a given table id
extension is reported only once, after collecting all its sections. The same table will be reported again only when its
version number changes.

On the contrary, short tables are all reported since they do not implement versioning.

It is also possible to use a ts::SectionDemux to be notified of all individual sections.

2.2.5.3. Application preferences contexts

The class ts::DuckContext carries various preferences about the standards or localizations. Typically, each
application has a given context. Using tsp, each plugin has it own context.

The preferences which are carried by a context include the default standard (DVB, ATSC, ISDB), the default
character sets in PSI/SI, the default private data specifier (for DVB private descriptors), the HF region (for
terrestrial or satellite frequency mapping)

The ts::DuckContext class can automatically define command-line arguments to explicitly specify preferences
(options --atsc or --default-charset for instance). Thus, the preferences are setup from the beginning.

But preferences are also accumulated all along the execution. For instance, as soon as an ATSC table is demuxed,
the fact that the transport stream contains ATSC data is stored in the context. Later, when an MPEG table (a PMT
for instance) contains an ambiguous descriptor tag which is used by DVB and ATSC, then the ATSC alternative will
be used.

2.2.6. DVB SimulCrypt protocols

The communications inside a DVB SimulCrypt head-end is defined by the standard ETSI TS 103 197, "Head-end
implementation of DVB SimulCrypt".

Most of these protocols use the same principles. They use binary TLV (Tag/Length/Value) messages, asynchronous
communications, concepts of channels, streams, status and error messages.

The generic handling of these messages is implemented by classes in the namespace ts::tlv. All TLV messages
inherit from ts::tlv::Message. Channel-level messages inherit from ts::tlv::ChannelMessage and stream-level
messages inherit from ts::tlv::StreamMessage.

The syntax of a given protocol is defined by subclassing ts::tlv::Protocol.

Currently, the TSDuck library implements the following protocols:

• ECMG⇔SCS in namespace ts::ecmgscs.

• EMMG/PDG⇔MUX in namespace ts::emmgmux.

Version 3.38-3816 TSDuck Developer’s Guide

33

2.2.7. Conditional access systems

The class ts::CASMapper analyzes the signalization of a transport stream, locates ECM and EMM stream and
associates each of them with a CA_System_Id.

An instance of ts::CASMapper can then be queried for ECM, EMM streams or CAS vendors.

2.2.8. Other forms of demux

We have already mentioned the classes ts::SectionDemux and ts::PESDemux. Other specialized forms of demux can
be implemented.

The class ts::T2MIDemux demuxes T2-MI (DVB-T2 Modulator Interface) packets and extracts encapsulated
transport streams. Similarly, the class ts::TeletextDemux extracts Teletext subtitles from TS packets.

Since all forms of demux share a number of properties, they all inherit from a root abstract class named
ts::AbstractDemux.

2.2.9. Digital TV tuners

The class ts::Tuner interfaces DVB/ATSC/ISDB tuner devices in a portable way. This is quite a challenge since Linux
and Windows use very different tuner frameworks. Some very-specific features are available either only on Linux
or Windows.

The abstract class ts::TunerParameters is the root of a hierarchy of classes containing tuning parameters.
Subclasses exist for DVB-S, DVB-T, DVB-C and ATSC. ISDB-S and ISDB-T are currently unsupported.

The class ts::TSScanner reads a TS from a ts::Tuner until all scanning information is found, typically until the PAT,
NIT and SDT are received. This is the basis for scanning a DTV network.

Note that tuner devices are supported on Linux and Windows only. On macOS, the above classes are defined but
return "unimplemented" errors when used.

2.2.10. Interface to Dektec devices

TSDuck can manipulate ASI and (de)modulator devices from Dektec. The TSDuck library includes the DTAPI library,
a proprietary C++ interface which is provided by Dektec. The DTAPI is not available in source form and not part of
the TSDuck source repository. However, when TSDuck is built, the DTAPI is downloaded in binary from Dektec and
included in the TSDuck library.

Such a packaging is authorized by the DTAPI license (see the file OTHERS.txt in the TSDuck source repository or
installation tree).

An application should not directly call the DTAPI. In practice, this works on Linux but not on Windows. So if you
want portability, do not do this. The reason is that the structure of Windows DLL’s is such that exported code from
a DLL must be compiled using specific attributes. But the DTAPI, as provided by Dektec, was not compiled with
these attributes. So, when the DTAPI is included in tsduck.dll, the DTAPI can be called from inside tsduck.dll but
is not accessible from the application.

This is why accessing the DTAPI from the application must be done through some TSDuck proxy class. The classes
ts::DektecControl, ts::DektecInputPlugin and ts::DektecOutputPlugin provide the features which are required by
the utility tsdektec and the plugin dektec. They can be used by third-party applications.

Note that Dektec devices are supported on Linux and Windows only. On macOS, the above classes are defined but
return "unimplemented" errors when used.

TSDuck Developer’s Guide Version 3.38-3816

34

2.3. Java and Python bindings

2.3.1. Overview

Starting with version 3.25, TSDuck includes Java and Python bindings to some high-level features.

Although subject to enhancements, these bindings will never aim at supporting the full TSDuck feature set since
this would be too large. Only a small subset of TSDuck high-level features are targeted.

The Java classes are documented in the Java bindings reference section.

The Python classes are documented in the Python bindings reference section.

Sample Java and Python applications are available in the TSDuck source tree.

Currently, the TSDuck Java and Python bindings provide access to the features in the following table. Equivalences
are provided between C++, Java, Python and command line tools.

The first three classes implement high-level features which have direct counterparts as command line tools. The
others are support classes which are only required to use the high-level classes.

Table 4. Equivalence between commands, C++, Java, Python classes

Comman
d

C++ class Java class Python class

tsp ts::TSProcessor io.tsduck.TSProcessor tsduck.TSProcessor

tsswitch ts::InputSwitcher io.tsduck.InputSwitcher tsduck.InputSwitcher

tstabcomp ts::SectionFile io.tsduck.SectionFile tsduck.SectionFile

n/a ts::DuckContext io.tsduck.DuckContext tsduck.DuckContext

n/a ts::Report io.tsduck.AbstractSyncReport tsduck.AbstractSyncReport

n/a ts::AsyncReport io.tsduck.AbstractAsyncReport tsduck.AbstractAsyncReport

n/a ts::SystemMonitor io.tsduck.SystemMonitor tsduck.SystemMonitor

n/a ts::PluginEventHandlerInterf
ace

io.tsduck.AbstractPluginEventHand
ler

tsduck.AbstractPluginEventHand
ler

n/a ts::PluginEventContext io.tsduck.PluginEventContext tsduck.PluginEventContext

2.3.2. Support classes

2.3.2.1. TSDuck execution context

The DuckContext class is used to define and accumulate regional or operator preferences. In the TSDuck C++
programming guide, it is referred to as TSDuck execution context. Most of the time, using the default state of a new
instance is sufficient.

The application sample Japanese tables, available in Java and Python, demonstrates how it can be necessary to
override the defaults in specific cases.

2.3.2.2. Reporting classes

The reporting classes (ts::Report C++ class hierarchy) are used to report logs, errors and debug. They are
consistently used all over TSDuck and are required to use the high level features. There is a large hierarchy of
classes in the three languages which can be classified according to two sets of criteria:

• Synchronous vs. asynchronous:

Version 3.38-3816 TSDuck Developer’s Guide

35

https://tsduck.io/doxy/group__java.html
https://tsduck.io/doxy/group__python.html
https://github.com/tsduck/tsduck/tree/master/sample/sample-java
https://github.com/tsduck/tsduck/tree/master/sample/sample-python
https://github.com/tsduck/tsduck/blob/master/sample/sample-java/SampleJapaneseTables.java
https://github.com/tsduck/tsduck/blob/master/sample/sample-python/sample-japanese-tables.py

◦ Synchronous report classes log messages in the same thread as the caller. They are usually not thread-
safe.

◦ Asynchronous report classes, on the other hand, can be used in a multi-threaded environment and the
actual message logging (such as writing in a log file) is performed in a separate thread. As a
consequence, an asynchronous report instance must be explicitly terminated. An asynchronous report
class is required when using heavily multi-threaded classes such as TSProcessor or InputSwitcher.

• Native vs. abstract:

◦ Native classes are the C++ classes which are used in all the TSDuck command line tools. They are typically
used to report to standard output, standard error, files or dropping the logs. They can be used from Java
and Python directly but cannot be derived or customized. They are typically used when predefined error
logging is sufficient.

◦ Abstract classes are pure Java or Python base classes which are designed to be derived in applications.
Such application-defined classes shall override the method logMessageHandler (Java) or log (Python) to
intercept and process the message lines.

The asynchronous abstract classes can be useful to collect events, tables and sections in XML, JSON or binary /
hexadecimal form in Java or Python applications when using TSProcessor or InputSwitcher. Some of the sample
Java and Python applications illustrate this mechanism.

Table 5. Categories of report classes in C++, Java, Python

Category C++ class Java class Python class

Synchronous, native ts::CerrReport io.tsduck.ErrReport tsduck.StdErrReport

ts::NullReport io.tsduck.NullReport tsduck.NullReport

Asynchronous, native ts::AsyncReport io.tsduck.AsyncReport tsduck.AsyncReport

Synchronous, abstract ts::Report io.tsduck.AbstractSyncReport tsduck.AbstractSyncReport

Asynchronous, abstract ts::AsyncReport io.tsduck.AbstractAsyncReport tsduck.AbstractAsyncReport

2.3.2.3. Resource monitoring

The SystemMonitor class is available in all languages, C++, Java and Python. It can be used at the top-level of an
application to implement the --monitor option as found in tsp and tsswitch. An instance of a thread-safe Report
class is used to report monitoring messages.

The SystemMonitor class is very simple to use. Examples are available in Java and Python.

2.3.2.4. Plugin events

For developers, TSDuck plugins can signal events which can be handled by the application. Each event is signalled
with a user-defined 32-bit event code. An application can register event handlers in the ts::TSProcessor instance
(see the class ts::PluginEventHandlerRegistry, knowing that ts::TSProcessor is a subclass of
ts::PluginEventHandlerRegistry). The event handler registration can include various selection criteria such as event
code value or originating plugin (see the inner class ts::PluginEventHandlerRegistry::Criteria).

C++ developers who create their own plugins can signal any kind of event that they later handle in their
application. This is illustrated in a C++ sample custom application. In this sample code, everything is customized in
the application: the plugin, the event it signals, the associated event data, the application handling of the event.

Since developing a TSDuck plugin is only possible in C++, Java and Python developers have more limited options.
Some standard TSDuck plugins such as tables, psi or mpe provide the option --event-code. Using this option, the
plugins signal event using the specified event code for each data they handle (sections or MPE datagrams
depending on the plugin).

TSDuck Developer’s Guide Version 3.38-3816

36

https://github.com/tsduck/tsduck/blob/master/sample/sample-java/SampleMonitoring.java
https://github.com/tsduck/tsduck/blob/master/sample/sample-python/sample-monitoring.py
https://github.com/tsduck/tsduck/blob/master/sample/sample-app-custom/myexec.cpp

Java and Python applications can derive from class AbstractPluginEventHandler to define and register their own
event handlers. Thus, binary sections or MPE datagrams can be handled directly from the plugin to the Java or
Python application.

Some plugins are even dedicated to application developers and are useless on tsp command lines. This is the case
of the plugin memory (both an input and an output plugin). This plugin, when used in a TSProcessor instance,
performs direct transport stream input and output from and to the application using memory buffers. The
memory buffers are signalled using plugin events. The memory input plugin is an example of an application-defined
event handler returning data to the plugin. See this sample code in the TSDuck source code tree.

2.3.3. Application/plugin communication in Java or Python

At high level, Java and Python applications can only run TSProcessor or InputSwitcher sessions, just like a shell-
script would do with commands tsp and tsswitch.

The communication from the Java and Python applications to the plugins is performed using plugin options.
These options may contain file names or UDP ports which can be created by the application.

More effectively, most file contents can be provided directly on the command line, avoiding the burden of creating
temporary files. For instance, wherever an input XML file name is expected, it is possible to use the XML content
instead. Any "XML file name" which starts with <?xml is considered as inline XML content. Similarly, if an input
"JSON file name" starts with { or [, it is considered as inline JSON content.

On reverse side, there is some limited form of communication from the plugins to the Java or Python application.
There are basically two ways to handle plugin information in the application: the logging system and plugin
events.

Using the logging system:

Some plugins support options such as --log-xml-line, --log-json-line or --log-hexa-line. With these options,
the extracted data (table, section, MPE datagram) are "displayed" as one single line in the designated format on
the logging system. Using user-defined Java or Python asynchronous abstract reporting classes, the application
receives all logged lines and can filter and manipulate the data which were extracted and logged by the plugins.

Using plugin events:

Some plugins support the option --event-code. With this option, the extracted data are signalled by the plugin as
an event. Using and registering user-defined Java or Python plugin event handlers, the application is directly
notified of the data.

Which mechanism, logging system or plugin events, should be used depends on the application.

• Logging system:

◦ Pros:

▪ The log lines are asynchronously processed in the context of the low-priority logging thread. Any
lengthy processing in the Java or Python application does not hurt the dynamics of the plugins.

◦ Cons:

▪ If the application needs to process binary data, the additional serialization process in the log line
adds some useless overhead.

▪ Because the logging system is non-intrusive by design, log messages may be lost if there are more
messages than the logging thread can process without making plugin threads wait. This can be
mitigated using the synchronous log option in the AbstractAsyncReport consttructor.

• Plugin events:

◦ Pros:

▪ The binary data are directly passed from the plugin to the application without any serialization,

Version 3.38-3816 TSDuck Developer’s Guide

37

https://github.com/tsduck/tsduck/blob/master/sample/sample-memory-plugins/

logging or multi-threading overhead.

◦ Cons:

▪ The application-defined event handlers execute in the context of the plugin thread. Any lengthy
processing at this stage slows down the plugin.

The following sample applications can be used as a starting point:

Table 6. Sample Java and Python communication applications

Communication type Java Python

Logging (XML) SampleAnalyzeSDT sample-analyze-sdt.py

Logging (JSON) SampleAnalyzeTS sample-analyze-ts.py

Logging (bin/hexa) SampleFilterTablesLog sample-filter-tables-log.py

Plugin events (sections) SampleFilterTablesEvent sample-filter-tables-event.py

Plugin events (MPE datagrams) SampleMPE sample-mpe.py

Plugin events (input/output) SampleMemoryPlugins sample-memory-plugins.py

2.3.4. Using TSDuck Java bindings

All TSDuck Java classes are defined in a package named io.tsduck.

A few examples are provided in the directory sample/sample-java in the TSDuck source code package.

2.3.4.1. Linux

The TSDuck Java bindings are installed with TSDuck in /usr/share/tsduck/java. All classes are in a JAR file named
tsduck.jar. Simply add this JAR in the environment variable CLASSPATH to use TSDuck from any Java application:

$ export CLASSPATH="/usr/share/tsduck/java/tsduck.jar:$CLASSPATH"

2.3.4.2. macOS

This is similar to Linux, except that instead of /usr/share, use /usr/local/share (Intel Macs) or /opt/homebrew/share
(Apple Silicon Macs).

$ export CLASSPATH="/usr/local/share/tsduck/java/tsduck.jar:$CLASSPATH"
$ export CLASSPATH="/opt/homebrew/share/tsduck/java/tsduck.jar:$CLASSPATH"

2.3.4.3. Windows

On Windows, Java bindings are optional components of the TSDuck installer. When they are selected for
installation, they are installed in the TSDuck area and the environment variable CLASSPATH is modified at system
level to include the JAR file of the TSDuck Java bindings.

Thus, any Java program can use TSDuck directly.

2.3.5. Using TSDuck Python bindings

All TSDuck bindings are defined in a module named tsduck. All Python programs using TSDuck shall consequently
start with:

TSDuck Developer’s Guide Version 3.38-3816

38

https://github.com/tsduck/tsduck/blob/master/sample/sample-java/SampleAnalyzeSDT.java
https://github.com/tsduck/tsduck/blob/master/sample/sample-python/sample-analyze-sdt.py
https://github.com/tsduck/tsduck/blob/master/sample/sample-java/SampleAnalyzeTS.java
https://github.com/tsduck/tsduck/blob/master/sample/sample-python/sample-analyze-ts.py
https://github.com/tsduck/tsduck/blob/master/sample/sample-java/SampleFilterTablesLog.java
https://github.com/tsduck/tsduck/blob/master/sample/sample-python/sample-filter-tables-log.py
https://github.com/tsduck/tsduck/blob/master/sample/sample-java/SampleFilterTablesEvent.java
https://github.com/tsduck/tsduck/blob/master/sample/sample-python/sample-filter-tables-event.py
https://github.com/tsduck/tsduck/blob/master/sample/sample-java/SampleMPE.java
https://github.com/tsduck/tsduck/blob/master/sample/sample-python/sample-mpe.py
https://github.com/tsduck/tsduck/blob/master/sample/sample-memory-plugins/SampleMemoryPlugins.java
https://github.com/tsduck/tsduck/blob/master/sample/sample-memory-plugins/sample-memory-plugins.py
https://github.com/tsduck/tsduck/tree/master/sample/sample-java

import tsduck

A few examples are provided in the directory sample/sample-python in the TSDuck source code package.

2.3.5.1. Linux

The Python bindings are installed with TSDuck in /usr/share/tsduck/python. Simply add this directory in the
environment variable PYTHONPATH to use TSDuck from any Python application:

$ export PYTHONPATH="/usr/share/tsduck/python:$PYTHONPATH"

2.3.5.2. macOS

This is similar to Linux, except that instead of /usr/share, use /usr/local/share (Intel Macs) or /opt/homebrew/share
(Apple Silicon Macs).

$ export PYTHONPATH="/usr/local/share/tsduck/python:$PYTHONPATH"
$ export PYTHONPATH="/opt/homebrew/share/tsduck/python:$PYTHONPATH"

2.3.5.3. Windows

On Windows, Python bindings are optional components of the TSDuck installer. When they are selected for
installation, they are installed in the TSDuck area and the environment variable PYTHONPATH is modified at system
level to include the root directory of the TSDuck Python bindings.

Thus, any Python program can use TSDuck directly.

2.3.5.4. Python prerequisites

The code was initially tested with Python 3.7 and higher. Python 2.x is not supported. Intermediate versions may
work but without guarantee.

2.3.5.5. Implementation notes

There are usually two ways to call C/C++ from Python:

• Using the predefined ctypes Python module to call C functions,

• Implementating a full native Python module in C/C++.

The second option is usually more flexible and more generic. However, the generated binary depends on the
version of Python. If such an option is used, the binary installation of TSDuck would require a specific version of
Python (or a specific set of versions of it). But each system has it own requirements on Python and it is difficult for
a product like TSDuck to impose a specific version of Python.

Consequently, the less flexible ctypes approach was chosen. The TSDuck binary library contains C++ wrapper
functions to some features of TSDuck and these carefully crafted functions are directly called from Python code
using ctypes, regardless of the version of Python. Note, however, that these C++ functions are hidden inside the
Python bindings and are invisible to the C++ application developer.

2.4. Developing a TSDuck plugin

Version 3.38-3816 TSDuck Developer’s Guide

39

https://github.com/tsduck/tsduck/tree/master/sample/sample-python

2.4.1. Plugin development workflow

When some new kind of transport stream processing is needed, several solutions are possible:

• First, check if an existing plugin or a combination of existing plugins can do the job.

• Check if an existing plugin can be extended (by adding new options for instance).

• As a last resort, develop a new plugin, which is relatively easy.

New plugins can be developed either as part of the TSDuck project or as independent third-party projects.

2.4.1.1. Developing independent third-party plugins

If you create your own third-party plugins (ie. if you are not a TSDuck maintainer), it is recommended to develop
your plugins outside the TSDuck project.

Do not modify your own copy of the TSDuck project with your private plugins. This could create useless difficulties
to upgrade with new versions of the project.

Consider developing your plugins in their own projects, outside TSDuck. You do not even need to get the full
source code of TSDuck. It is sufficient to install the TSDuck development environment (see section 2.1).

An example of a third party plugin project is provided in the directory sample/sample-plugin.

2.4.1.2. Developing plugins for the TSDuck project

To develop a new plugin named foo, follow these steps:

• Create a source file named tsplugin_foo.cpp in the tsplugins subdirectory.

• On UNIX systems (Linux, macOS, BSD), this new source file will be automatically recognized by the Makefile
and the new plugin will be built.

• On Windows systems, the plugin needs a "project file" for Visual Studio and MSBuild. This project file shall be
referenced in the TSDuck "solution file".

The last step is automated using the Python script scripts/build-project-files.py. This script explores the source
files for all commands and plugins. It automatically generates missing project files and references them in the
solution file.

This script can be run on UNIX systems (Linux, macOS, BSD) or Windows systems. On Windows, it can be easier to
launch the PowerShell script scripts/build-project-files.ps1, which simply calls the Python script.

2.4.2. Development guidelines

Don’t write a plugin from scratch. Use an existing plugin as code base (beware however of the pitfalls of careless
copy / paste). The simplest code bases can be found in the plugins null (input), drop (output) , skip (basic packet
processing), nitscan (reading content of PSI/SI), svrename (modifying PSI/SI on the fly).

Always create plugins which perform simple and elementary processing. If your requirements can be divided into
two independent processing, create two distinct plugins. The strength of TSDuck is the flexibility, that is to say the
ability to combine elementary processing independently and in any order.

2.4.2.1. Class hierarchy

In the source file of the plugin, create a C++ class, derived from either ts::InputPlugin, ts::OutputPlugin or
ts::ProcessorPlugin. If your plugin implements two capabilities (both input and output for instance), implement
the corresponding two classes in the same source file.

See the class diagram of ts::Plugin in the reference programming documentation for a global view of the plugin

TSDuck Developer’s Guide Version 3.38-3816

40

https://github.com/tsduck/tsduck/tree/master/sample/sample-plugin
https://tsduck.io/doxy/

classes.

Specialized plugins which manipulate exiting tables derive from ts::AbstractTablePlugin. Examples of such
plugins are pmt, pat, nit, etc. The actual plugin subclasses focus on the modification of the target table while the
superclass automatically handles demuxing, remuxing and creation of non-existing tables.

Specialized descrambling plugins derive from ts::AbstractDescrambler. This abstract class performs the generic
functions of a descrambler: service location, ECM collection, descrambling of elementary streams. The concrete
classes which derive from ts::AbstractDescrambler must perform CAS-specific operations: ECM streams filtering,
ECM deciphering, control words extraction. Most of the time, these concrete classes must interact with a
smartcard reader containing a smartcard for the specific CAS.

2.4.2.2. Invoking tsp from a plugin, the ts::TSP callbacks

In its constructor, each plugin receives an associated ts::TSP object to communicate with the tsp main
executable. This instance of ts::TSP is a protected field named tsp which can be freely accessed by the code of the
plugin.

A plugin shared library must exclusively use that tsp object for text display and must never use std::cout, printf
or the like. The class ts::TSP is a subclass of ts::Report and supports all reporting methods such as info(),
verbose(), error(), debug(), etc.

When called in a multi-threaded context, the supplied tsp object is thread-safe and asynchronous (the methods
return to the caller without waiting for the message to be printed).

Note that the plugin instance is also a subclass of ts::Report and automatically redirects all messages to its tsp
field. Therefore, the code of the plugin can transparently use its own methods info(), error(), etc. This is
equivalent to calling its tsp.

2.4.2.3. Joint termination support

A plugin can decide to terminate tsp on its own (returning end of input, output error or
ts::ProcessorPlugin::TSP_END). The termination is unconditional, regardless of the state of the other plugins.
Thus, if several plugins have termination conditions, tsp stops when the first plugin decides to terminate. In other
words, there is an "or" operator between the various termination conditions.

The idea behind joint termination is to terminate tsp when several plugins have jointly terminated their
processing. If several plugins have a "joint termination" condition, tsp stops when the last plugin triggers the joint
termination condition. In other words, there is an "and" operator between the various joint termination
conditions.

First, a plugin must decide to use joint termination. This is usually done in method ts::Plugin::start(), using
ts::TSP::useJointTermination(bool) when the option --joint-termination is specified on the command line.

Then, when the plugin has completed its work, it reports this using ts::TSP::jointTerminate(). After invoking this
method, any packet which is processed by the plugin may be ignored by tsp.

2.5. Developing a TSDuck extension

Applications or tsp plugins can be developed on their own. But it is also possible to develop fully integrated
extensions to TSDuck.

An extension not only adds new plugins and commands, it can also augment the features of standard TSDuck
commands and plugins. An extension can also be packaged as a binary installer which can be deployed on top of
an existing installation of TSDuck.

The possible features of a TSDuck extension are:

• Handling third-party tables and descriptors. The new tables and descriptors can be manipulated in XML or

Version 3.38-3816 TSDuck Developer’s Guide

41

JSON, analyzed and displayed with the standard TSDuck tools.

• Handling third-party Conditional Access Systems, based on a range of CA_system_id values. The ECM’s, EMM’s
and private parts of the CA_descriptor are correctly analyzed and displayed with the standard TSDuck tools.

• Adding filtering capabilities based on specific or private conditions on sections for command tstables and
plugin tables.

• Additional plugins for tsp.

• Additional command-line utilities.

A complete example of a TSDuck extension is provided in the TSDuck source tree. This example also provides
scripts to build standard installers (.exe on Windows, .rpm and .deb on Linux). The generated packages install the
extension on top of a matching version of TSDuck.

2.5.1. Files in an extension

A TSDuck extension typically contains the following types of files:

• Additional utilities. They are executable files without predefined naming. They are installed in the same
directory as the TSDuck commands.

• Additional tsp plugins. They are dynamic libraries named tsplugin_XXX.so, .dylib or .dll. The plugins are
loaded by tsp when invoked by their names XXX.

• Extension shared libraries named tslibext_XXX.so, .dylib or .dll. All shareable libraries named tslibext_XXX
in the same directory as the TSDuck binaries or in the path TSPLUGINS_PATH are automatically loaded when any
TSDuck command is invoked (in fact any time the TSDuck library tsduck.dll or libtsduck.so or .dylib is used).
Such libraries typically install hooks into the core of TSDuck to handle third-party signalization.

• XML files describing the XML models for third-party signalization (tables and descriptors). There is no
mandatory naming template for those files but tslibext_XXX.xml is recommended. These XML files must be
registered by the extension dynamic library (details below).

• Name files describing third party identifiers (table ids, descriptor tags, CA system id, stream types, etc.) These
files are used by TSDuck to better identify the various entities. There is no mandatory naming template for
those files but tslibext_XXX.names is recommended. These files must be registered by the extension dynamic
library (details below).

2.5.2. The extension dynamic library

All shareable libraries named tslibext_XXX.so, .dylib or .dll are automatically loaded by any TSDuck command
or plugin. The initialization of the library is responsible for registering various hooks which implement the
additional features.

2.5.2.1. Identification of the extension

This is an optional but recommended step. One C++ module inside the tslibext_XXX library shall invoke the macro
TS_REGISTER_EXTENSION as illustrated below:

TS_REGISTER_EXTENSION(u"foo", // extension name
 u"Sample foo extension", // short description
 {u"foot", u"foobar"}, // list of provided plugins for tsp
 {u"footool", u"foocmd"}); // list of provided command-line tools

Using this declaration, the extension is identified and listed using the command tsversion --extensions.

Without the declaration, the extension is loaded and functional but it is not identified.

TSDuck Developer’s Guide Version 3.38-3816

42

https://github.com/tsduck/tsduck/tree/master/sample/sample-extension

2.5.2.2. Providing an XML model file for additional tables and descriptors

To analyze input XML files containing tables, TSDuck uses an XML model to validate the syntax of the input XML
file. There is a predefined large XML file which describes all supported tables and descriptors.

An extension may provide additional smaller XML files which describe the new tables or descriptors. See the
sample extension for more details. The XML files shall be installed in the same directory as the rest of the
extension (and TSDuck in general).

For each additional XML file, there must be one C++ module inside the tslibext_XXX library which invokes the
macro TS_REGISTER_XML_FILE as illustrated below:

TS_REGISTER_XML_FILE(u"tslibext_foo.xml");

2.5.2.3. Providing a names files for additional identifiers

The usage rules and conventions are identical to the XML file above. The declaration macro for each names file is
TS_REGISTER_NAMES_FILE as illustrated below:

TS_REGISTER_NAMES_FILE(u"tslibext_foo.names");

Here is an example, from the sample "foo" extension, which defines additional names for a table, a descriptor and
a range of CA_system_id.

[TableId]
0xF0 = FOOT

[DescriptorId]
0xE8 = Foo

[CASystemId]
0xF001-0xF008 = FooCAS

2.5.2.4. Providing support for additional tables

If your environment defines a third-party table which is unsupported or unknown in TSDuck, you can implement it
in your extension library.

First, define the C++ class implementing the table:

class FooTable : public ts::AbstractLongTable { ... };

In the implementation of the table, register hooks for the various features you support. In this example, we
register a C++ class for FooTable:

TS_REGISTER_TABLE(FooTable, // C++ class name
 {0xF0}, // table id 0xF0
 ts::Standards::NONE, // not defined in any standard
 u"FOOT", // XML name is <FOOT>
 FooTable::DisplaySection);

The last argument to TS_REGISTER_TABLE is a static method of the class which displays the content of a section of
this table type.

Version 3.38-3816 TSDuck Developer’s Guide

43

The XML model for the table is included in the XML file:

<?xml version="1.0" encoding="UTF-8"?>
<tsduck>
 <_tables>
 <FOOT version="uint5, default=0" current="bool, default=true" foo_id="uint16, required"
name="string, optional">
 <_any in="_descriptors"/>
 </FOOT>
 </_tables>
</tsduck>

for the following binary layout, using the same conventions as MPEG/DVB standards:

table_id 8 bits = 0xF0
section_syntax_indicator 1 bit = '1'
reserved 3 bits
section_length 12 bits
foo_id 16 bits
reserved 2 bits
version_number 5 bits
current_next_indicator 1 bit
section_number 8 bits
last_section_number 8 bits
name_length 8 bits
for(i=0;i<N;i++){
 name_char 8 bits
}
reserved_future_use 4 bits
descriptors_length 12 bits
for (i=0;i<N;i++){
 descriptor()
}
CRC_32

2.5.2.5. Providing support for additional descriptors

Similarly, it is possible to implement a third-party descriptor as follow:

class FooDescriptor : public ts::AbstractDescriptor { ... };

In the implementation of the descriptor, we register hooks for the various features. Since this is a non-DVB
descriptor with descriptor tag 0xE8, greater than 0x80, we must set the private data specifier to zero in the ts::EDID
("extended descriptor id").

TS_REGISTER_DESCRIPTOR(FooDescriptor, // C++ class name
 ts::EDID::Private(0xE8, 0), // "extended" descriptor id
 u"foo_descriptor", // XML name is <foo_descriptor>
 FooDescriptor::DisplayDescriptor);

The last argument to TS_REGISTER_DESCRIPTOR is a static method of the class which displays the content of a
descriptor.

The XML model for the descriptor is included in the XML file:

TSDuck Developer’s Guide Version 3.38-3816

44

<?xml version="1.0" encoding="UTF-8"?>
<tsduck>
 <_descriptors>
 <foo_descriptor name="string, required"/>
 </_descriptors>
</tsduck>

for the following binary layout:

descriptor_tag 8 bits = 0xE8
descriptor_length 8 bits
for(i=0;i<N;i++) {
 name_char 8 bits
}

2.5.2.6. Implementing advanced section filtering capabilities

The command tstables (and its plugin counterpart tables) can process vast amounts of tables. To extract specific
tables or sections, the command provides filtering options such as --pid, --tid or --tid-ext.

For specific sections, it is possible to define additional filtering options to the tstables command.

The extension library shall provide a C++ class implementing ts::TablesLoggerFilterInterface. The sample foo
extension provide an option --foo-id which selects instances of FooTable containing specific values for some
foo_id field.

class FooFilter: public ts::TablesLoggerFilterInterface { ... };

See the documentation of ts::TablesLoggerFilterInterface for more details.

In the implementation of the class, we register it as a section filter for tstables:

TS_REGISTER_SECTION_FILTER(FooFilter);

2.5.2.7. Providing support for additional Conditional Access Systems

If you work with a specific Conditional Access System, you probably manipulate confidential information that
cannot be published in an open-source tool such as TSDuck. The solution is to develop a private closed-source
extension.

In the extension library, you may register functions to display the structure of the ECM’s, EMM’s or private part of
the CA_descriptor. The registration is based on a range of CA_system_id (here the constants CASID_FOO_MIN and
CASID_FOO_MAX).

// Display a FooCAS ECM on the output stream.
// Compatible with ts::DisplaySectionFunction profile.

void DisplayFooCASECM(ts::TablesDisplay& display, const ts::Section& section, int indent);

// Display a FooCAS EMM on the output stream.
// Compatible with ts::DisplaySectionFunction profile.

void DisplayFooCASEMM(ts::TablesDisplay& display, const ts::Section& section, int indent);

// Display the payload of a FooCAS ECM on the output stream as a one-line "log" message.

Version 3.38-3816 TSDuck Developer’s Guide

45

// Compatible with ts::LogSectionFunction profile.

ts::UString LogFooCASECM(const ts::Section& section, size_t max_bytes);

// Display the payload of a FooCAS EMM on the output stream as a one-line "log" message.
// Compatible with ts::LogSectionFunction profile.

ts::UString LogFooCASEMM(const ts::Section& section, size_t max_bytes);

// Display the private part of a FooCAS CA_descriptor on the output stream.
// Compatible with ts::DisplayCADescriptorFunction profile.

void DisplayFooCASCADescriptor(ts::TablesDisplay& display, const uint8_t* data, size_t size, int
indent, ts::TID tid);

See the documentation for ts::DisplaySectionFunction, ts::LogSectionFunction and
ts::DisplayCADescriptorFunction.

To register the display handlers in TSDuck:

TS_REGISTER_SECTION({ts::TID_ECM_80, ts::TID_ECM_81},
 ts::Standards::NONE, // not defined in any standard
 DisplayFooCASECM, // display function
 LogFooCASECM, // one-line log function
 {}, // no predefined PID
 CASID_FOO_MIN, // range of CA_system_id
 CASID_FOO_MAX);

TS_REGISTER_SECTION(ts::Range<ts::TID>(ts::TID_EMM_FIRST, ts::TID_EMM_LAST),
 ts::Standards::NONE, // not defined in any standard
 DisplayFooCASEMM, // display function
 LogFooCASEMM, // one-line log function
 {}, // no predefined PID
 CASID_FOO_MIN, // range of CA_system_id
 CASID_FOO_MAX);

TS_REGISTER_CA_DESCRIPTOR(DisplayFooCASCADescriptor, CASID_FOO_MIN, CASID_FOO_MAX);

2.5.3. Building cross-platform binary installers for an extension

See the sample foo extension in the TSDuck source tree.

Scripts are provided to build .exe installers on Windows, .rpm and .deb packages on Linux.



To avoid unexpected issues, an extension is only compatible with the version of TSDuck it was
compiled with. When you install a new version of TSDuck, make sure to rebuild your extension
with the development environment of this specific version of TSDuck. Then, install the new
version of the extension on top of the same new version of TSDuck.

TSDuck Developer’s Guide Version 3.38-3816

46

https://github.com/tsduck/tsduck/tree/master/sample/sample-extension
https://github.com/tsduck/tsduck/tree/master/sample/sample-extension
https://github.com/tsduck/tsduck/tree/master/sample/sample-extension

Chapter 3. Contributing to TSDuck Development
TSDuck development is managed using Git. The reference repository is on GitHub.

Code contributions from external developers are welcome and will be reviewed (without guaranteed response
time however). Contributions shall be submitted using pull requests on GitHub exclusively.

This chapter summarizes the main actions to help developers and integrators to work with pull requests. This is
the minimal set of actions.

More details can be found on GitHub documentation. Several articles also describe the GitHub standard fork &
pull request workflow. We specifically recommend this one.

3.1. Transparency of contributions

All commits in a Git pull request shall have a clear and transparent identification of the author. The author name
shall be the true first and last names of the contributor. No pseudo or other forms or anonymity is allowed.
Preferably (although not required), the author’s e-mail should be a real address where the contributor can be
contacted.

This requirement for transparency is not arbitrary. There is a reason for it. The world of Digital TV is roughly
divided in industries, service providers, TV operators, and pirates. A technical toolbox such as TSDuck is useful to
everyone, equally. But it must be clear to everyone that TSDuck is made by engineers for engineers. TSDuck shall
remain a fully transparent project: open source, identified web sites, identified authors and contributors.

In the world of Pay-TV, anonymity equals piracy. This may seem unfair but this is the way it is perceived by the
industry. So, to maintain the trust in TSDuck, let’s keep anonymity away from it. We hope that all contributors
understand this position.

3.2. Contributor workflow

3.2.1. Initial setup

The first requirement is to create a GitHub account, if you do not already have one.

Initially, create your own fork of the TSDuck repository. Go to the TSDuck reference repository and click on the
"Fork" button.

Clone your GitHub forked repository on your development system. Use one of the two following commands.

$ git clone https://USERNAME@github.com/USERNAME/tsduck.git
$ git clone git@github.com:USERNAME/tsduck.git

In the first case, you will need to provide a GitHub personal access token each time you push to GitHub. In the
second case, you need to first upload your SSH public key to GitHub and then simply push without password.

You may want to track more precisely the master branch of the reference repository. See more details in the
above mentioned article.

3.2.2. Contributing code

To facilitate merging, each contribution should be provided in a specific branch. Let’s call it newfeature here:

$ git branch newfeature

Version 3.38-3816 TSDuck Developer’s Guide

47

https://github.com/tsduck/tsduck
https://github.com/tsduck/tsduck/pulls
https://help.github.com/articles/about-pull-requests/
https://gist.github.com/Chaser324/ce0505fbed06b947d962
https://github.com/tsduck/tsduck
https://gist.github.com/Chaser324/ce0505fbed06b947d962

$ git checkout newfeature

Then, do your coding work.

If the contribution brings new features, be sure to document them in the TSDuck user’s guide. The user’s guide is
made of text files in Asciidoc format in the directory doc/user.

New features and bug fixes should also be documented in the file CHANGELOG.txt.

When all modifications are ready, commit and push the work to GitHub:

$ git push origin newfeature

Finally, create the pull request. Go to your forked repository on GitHub, something like
https://github.com/username/tsduck, and select the branch newfeature. Select the "Pull requests" tab and click on
the green button "New pull request". Select the branch for the pull request and click on "Create pull request".

The pull request is transmitted to the project main repository tsduck/tsduck. The Continuous Integration (CI)
process is automatically started on your code. During this CI process, the code is compiled and tested on Linux,
macOS and Windows using various compilers and variants of the C++ standard. Then, all TSDuck tests are run on
your code.

In case of failure of the CI job, you will be notified by mail and the pull request is retained on hold. You may then
review the failures, update your code, commit and push on your branch again. The new commits are added to the
pull request and the CI job is run again.

Most users work in one environment, one operating system, one compiler. Even if the code works in this
environment, it may fail to build or run in another environment, operating system or compiler. This is why the CI
process is useful because you can review the impact of your modifications in other environments.

3.2.3. Testing your code

Before pushing your code and creating the pull request, you will test your code. Additionally, when your add new
features or support for new signalization, tables or descriptors, it is recommended to update the TSDuck test
suite.

See the section 4.1 for more details.

To update the TSDuck test suite according to your new code, fork the tsduck-test repository, update it, and create
pull requests on this repo using the same method as the main tsduck repository.

Pay attention to the interactions between the tsduck and tsduck-test repositories.

The tsduck-test repository contains tests and reference outputs for those tests. When you update the TSDuck
code, the test reference output may need to be updated accordingly. You do that in your fork of the tsduck-test
repository. When you create a pull request on the main tsduck repository, the CI job checks the origin of the pull
request. In your case, this is your username/tsduck forked repository. The CI job checks if you also have a
username/tsduck-test forked repository. If it exists, it is used to run the test suite. If you do not have a fork of the
test repository, the reference tsduck/tsduck-test repository is used.

Consequently, the recommended workflow depends on the type of code contribution you provide.

• If you provide a simple code update which has no impact on the test suite, then you should fork the
tsduck/tsduck repository only. Your code will be tested against the tsduck/tsduck-test repository to make
sure it does not break the project.

• If your contribution is more substantial and needs an update of the test suite, then you need to fork the
tsduck/tsduck and tsduck/tsduck-test repositories. Once your code and tests are complete, create the
commits and push the two repositories. At the end, create the pull requests on the two repositories. The CI

TSDuck Developer’s Guide Version 3.38-3816

48

https://github.com/
https://github.com/tsduck/tsduck-test
https://github.com/tsduck/tsduck

job for the tsduck repository will then use your username/tsduck-test repository for the test suite. If all tests
pass on all operating systems, your contributions in tsduck and tsduck-test will be merged.

One last point: If you maintain your fork of USERNAME/tsduck-test, be sure to keep it synchronized with the
reference tsduck/tsduck-test repository because your USERNAME/tsduck-test will always be used in your CI jobs. If
one day, you submit a small code update which did not need any update in the test suite and your
USERNAME/tsduck-test is not up-to-date, your CI job may fail.

3.3. Integrator workflow

On your local development system, configure your TSDuck development git repository to track all pull requests. In
the file .git/config, add the following line in section [remote "origin"]:

[remote "origin"]
 ... existing lines ...
 fetch = +refs/pull/*/head:refs/pull/origin/*

To integrate a pull request number NNN, fetch it in a local branch named NNN:

$ git fetch origin
$ git checkout -b NNN pull/origin/NNN

To merge the pull request into the master branch:

$ git checkout master
$ git merge NNN

Additional review and fix may be necessary before pushing the contribution.

Version 3.38-3816 TSDuck Developer’s Guide

49

Chapter 4. Maintaining TSDuck Code

4.1. Testing TSDuck

4.1.1. Testing overview

TSDuck is highly flexible, allowing an unlimited number of configurations. Testing it is consequently challenging.
Moreover, some use cases are difficult to automate or require specific hardware. Testing live TS reception using all
possible DVB tuners or Dektec devices requires a lot of material, human and time resources which are far beyond
the capabilities of a free open-source project.

From a strict industrial standpoint, TSDuck is consequently not fully tested.

However, on a pragmatic standpoint, test suites have been setup to extract the best of what could be done with
limited resources.

Thus, although it is impossible to guarantee that a given release of TSDuck is bug-free, we may be relatively
confident that no major regression has been introduced.

4.1.2. Organization of the tests

The code of TSDuck is divided in two parts, a large C++ library (tsduck.dll, libtsduck.so, or .dylib) and a
collection of small command line tools and plugins.

Similarly, the tests for TSDuck are divided in two parts.

• The TSDuck library has its own unitary test suite based on a custom framework named "TSUnit". This test
suite is part of the main tsduck repository for TSDuck in directory src/utest.

• The tools and plugins are less easy to test. They work on large transport stream files which would clutter the
TSDuck repository. The repository tsduck-test contains those tests and the relevant scripts and data files.

The two test suites are fully automated.

4.1.3. The TSDuck library test suite

In the main TSDuck repository, the directory src/utest contains the source file for one single program named
utest. This program is divided in many source files (or test suites). Each source file contains many unitary tests.
The test infrastructure is based on a custom framework named "TSUnit".


The structure of TSUnit is freely inspired by equivalent frameworks such as CppUnit and JUnit.
It has been adapted to TSDuck specificities and focuse on fast and easy development of test
suites.

The utest executable is built twice, once using the TSDuck shared library and once using the static library. On
UNIX systems (Linux, macOS, BSD), both versions of the test suite are built and run using make test as illustrated
below

$ make -j10 test

 [CXX] utestXML.cpp
 [LD] /home/tsduck/bin/release-x86_64-vmubuntu/utest
 [LD] /home/tsduck/bin/release-x86_64-vmubuntu/utest_static
TSPLUGINS_PATH=/home/tsduck/bin/release-x86_64-vmubuntu LD_LIBRARY_PATH=/home/tsduck/bin/release-
x86_64-vmubuntu /home/tsduck/bin/release-x86_64-vmubuntu/utest

TSDuck Developer’s Guide Version 3.38-3816

50

https://github.com/tsduck/tsduck
https://github.com/tsduck/tsduck-test

OK (619 tests, 28730 assertions)

TSPLUGINS_PATH=/home/tsduck/bin/release-x86_64-vmubuntu LD_LIBRARY_PATH=/home/tsduck/bin/release-
x86_64-vmubuntu /home/tsduck/bin/release-x86_64-vmubuntu/utest_static

OK (616 tests, 28707 assertions)

$

The number of tests and assertions changes with new versions of TSDuck. When new features are added, the
corresponding new tests are added.

Note that the statically linked version contains slightly less tests. The missing tests are related to plugin
activations and they can run only in a shared library environment.

On Windows, the Visual Studio project builds two executables named utests-tsduckdll.exe and utests-
tsducklib.exe. They can be run manually or from Visual Studio:

D:\tsduck> bin\Release-x64\utests-tsduckdll.exe

OK (619 tests, 28747 assertions)

D:\tsduck> bin\Release-x64\utests-tsducklib.exe

OK (616 tests, 28724 assertions)

D:\tsduck>

By default, the test program runs all tests and reports failures only. But utest also accepts a few command
options which make it appropriate to debug individual features.

The available command line options are:

-d Debug messages are output on standard error

-l List all tests but do not execute them.

-t name Run only one test or test suite.

First, the option -l is used to list all available tests:

$ utest -l
AlgorithmTest
 AlgorithmTest::testEnumerateCombinations
ArgsTest
 ArgsTest::testAccessors
 ArgsTest::testAmbiguousOption
........
 WebRequestTest::testNoRedirection
 WebRequestTest::testReadMeFile
XMLTest
 XMLTest::testChannels
 XMLTest::testCreation
 XMLTest::testDocument
 XMLTest::testEscape
 XMLTest::testFileBOM
 XMLTest::testInvalid
 XMLTest::testKeepOpen
 XMLTest::testTweaks

Version 3.38-3816 TSDuck Developer’s Guide

51

 XMLTest::testValidation
$

The left-most names are test suite names. They represent one source file in src/utest. It is possible to run all tests
in a test suite or one specific test. For instance:

$ utest -t ArgsTest
$ utest -t XMLTest::testValidation

The option -d is used to produce debug message (see examples in the test source files).

Thus, utest alone can be used as an automated fairly complete non-regression test suite for the TSDuck library or
as a debug environment for a given feature under development (in all good "test-driven development"
approaches, the code is written at the same time as its unitary test).

4.1.4. The TSDuck tools and plugins test suite

The Git repository tsduck-test contains high-level tests for the TSDuck tools and plugins.

This test suite is fully automated and works on test files only. No specific hardware (DVB tuner or Dektec device),
no live stream is tested. This is a known limitation.

The principle is simple. Reference input files are stored in the repository, mainly transport stream files which were
once captured from real live sources. Test scripts contain deterministic commands which should always produce
the same outputs (data, logs, etc). These reference outputs are also stored in the repository.

The test suite runs using a given version of TSDuck and its outputs are compared with the reference outputs. If
differences are detected, there is a potential problem.

Since different versions of TSDuck may produce slightly different outputs, a given version of the test suite formally
applies to one version of TSDuck only. Git tags are aligned in both repositories (or should be…) to indicate the
target version.

4.1.4.1. Structure of the test suite

In short, execute the script run-all-tests.sh to run the complete test suite.

The repository contains the following subdirectories:

tests Contains one script per test or set of tests. The name for test NNN is test-NNN.sh. Each test script can
be executed individually. All tests are executed using the script run-all-tests.sh.

common Contains utilities and common script.

input Contains input data files for the tests.

referenc
e

Contains reference output files for the various tests. There is one subdirectory test-NNN per test which
contains all output files for that test.

tmp Contains output files which are created by the execution of the tests. These files are typically compared
against reference output files in reference. These files are temporary by definition. The subdirectory
tmp is present on test machines only and is excluded from the Git repository.

4.1.4.2. Adding new tests

To add a new test:

• Allocate a new test number and document the purpose of the new test in the file README.md.

TSDuck Developer’s Guide Version 3.38-3816

52

https://github.com/tsduck/tsduck-test

• Add input files in subdirectory input. For test NNN, all input files should be named test-NNN.*. There is
generally zero or one input file per test, sometimes more.

• Create the script test-NNN.sh in subdirectory tests. Use other existing test scripts as templates.

• Run the command tests/test-NNN.sh --init. If the test is properly written, this creates the reference output
files in the subdirectory reference/test-NNN. Manually check the created files, verify that they are correct. Be
careful with this step since these files will be used as references.

• Run the same command without the --init option. This time, the output files are created in tmp and are
compared with files in reference. Verify that all tests pass. Errors may appear if the test script is not properly
written or if the output files contain unique, non-deterministic, time-dependent, system-dependent or file-
system-dependent information. Make sure the output files are totally reproduceable in all environments. At
worst, add code in the test script to remove any information from the output files which is known to be non-
reproduceable.

Sometimes, TSDuck is modified in such in a way that an output file is modified on purpose. Usually, this starts with
a failed test. When analysing the test failure, it appears that the modification of the output is intentional. In that
case, re-run the command tests/test-NNN.sh --init to update the reference output files. Do not forget to
manually validate them since they will act as the new reference.


The reference output files are stored in the Git repository. Therefore, the best way to have a
quick overiew of what changed in the output reference files is simply git diff.

4.1.4.3. Testing a development version

By default, the test suite uses the TSDuck command from the system path. Typically, it will use the installed
version.

To test a development version, the two Git repositories tsduck and tsduck-test shall be checked out at the same
level, side by side in the same parent directory. First, TSDuck shall be rebuilt in its repository.

Then, when the option --dev is specified to a test script or to run-all-tests.sh, the test suite automatically uses
the TSDuck executables from the development repository.

4.1.4.4. Large files

The tsduck-test repository contains large files, typically transport stream files.

Initially, these files were not stored inside the regular GitHub repository. Instead, they used the Git Large File
Storage (LFS) feature of GitHub. However, using LFS on GitHub happended to be a pain, as experienced by others
and explained in this article.

As a consequence, the transport stream files were re-integrated into the Git repository as regular files. But we
now limit their size to 20 MB.

4.2. Automation

TSDuck is a free open-source project which is maintained on spare time by very few developers (only one at the
time of this writing). As a consequence, the maintenance of the project is driven by the lack of time and resource.
To face these constraints, automation is essential.

This is briefly explained in this presentation.

For future maintainers or contributors, this page lists a few automation procedures which are used by the project.

Version 3.38-3816 TSDuck Developer’s Guide

53

https://git-lfs.github.com
https://git-lfs.github.com
https://medium.com/@megastep/github-s-large-file-storage-is-no-panacea-for-open-source-quite-the-opposite-12c0e16a9a91
https://tsduck.io/download/docs/tsduck-project.pdf

4.2.1. Continuous integration

Each time a commit or a pull request is pushed to GitHub, the workflow .github/workflows/continuous-
integration.yml is automatically run to verify that the project can be built on most supported platforms and
contains no regression.

• The workflow is run on Linux Ubuntu, macOS, and Windows (64 and 32 bits).

• The compilation is done using two revisions of the C++ language: C++17 and C++20.

• On Linux, the builds are repeated using two compilers, gcc and clang.

• In each configuration of platform, compiler and language level:

◦ TSDuck is fully built.

◦ The unitary tests are run.

◦ The full test-suite is downloaded and run.

◦ The sample programs are built using a typical TSDuck installation of the binaries which were just built
(Linux and macOS only).

• The documentation is rebuilt: user’s guide, developer’s guide, programming reference using doxygen.
Missing documentation for new features can be found in the log. This is done on Ubuntu only.

4.2.2. Nightly builds

Every night, if there were any modification in the TSDuck repo during the last day, "nightly builds" are
automatically produced and published on the TSDuck web site. No manual action is required, everything is
automated.

The workflow .github/workflows/nightly-build.yml is automatically run every day at 00:40 UTC.

• On Linux Ubuntu and Windows (64 bits only), the TSDuck binary packages are built for the current state of the
master branch in the repository.

• The produced binaries are installed on the CI/CD system.

• The full test-suite is downloaded and run.

• The complete set documentation (user’s guide, developer’s guide, programming reference) is built and
packaged in an archive. If the installed version of doxygen is known to contain bugs in the generation of the
TSDuck documentation (many were found), the source code for a known good version of doxygen is
downloaded and rebuilt first. This is done to ensure that the documentation is always correct.

◦ The Linux Ubuntu binaries, the Windows binaries and the documentation package are published as
"artefacts" of the workflow. They are publicly downloadable from GitHub.

At the end of the nightly-build.yml workflow, when all build jobs are completed, the update job triggers a signal
on the TSDuck web site. A PHP script is automatically run on the web site to retrieve, download and publish the
latest nighly binaries and documentation.

4.2.3. Release creation

Creating an "official" TSDuck release is relatively easy. Although the build time for all binaries can be long,
everything is automated and run in the background without requiring the maintainer’s attention.

Since TSDuck is maintained with little resource and time, there is no product management cycle. Thanks to the
continuous integration process, any state of the repository can be used as a release candidate, as long as there is
no issue in the CI process and no major development or fix is in progress.

As a rule of thumb, a new release is produced every 3 to 6 months, when enough new features or fixes are

TSDuck Developer’s Guide Version 3.38-3816

54

https://tsduck.io/download/prerelease/
https://github.com/tsduck/tsduck/actions/
https://tsduck.io/
https://tsduck.io/download/prerelease/

available, based on the CHANGELOG file.

4.2.3.1. Building the various binaries

Binaries must be built for Windows (64 bits only) and a few major Linux distros (Fedora, RedHat, Ubuntu, Debian,
and 32-bit Raspian). Additional binaries are now built for some Arm64 Linux distros.

The idea is to have a central system (Linux, macOS or Windows) from which the builds are orchestrated. The script
pkg/build-remote.sh can be used to build TSDuck binaries on various remote systems and collect the resulting
installers.

The remote systems can be physical systems or virtual machines running on the central system. When a virtual
machines is not active, it is automatically booted, the binaries are built and collected, and then the virtual
machines is shut down. The currently supported hypervisors to managed virtual machines are VirtualBox, VMware
and Parallels Desktop (macOS). All systems shall be preconfigured so that the central user is authorized to connect
on each of them using ssh without password (use public key authentication, not passwordless accounts!)

The maintainer shall typically have a personal script, outside the repository, which calls build-remote.sh on all
systems.

Typical example of such a script, with one physical remote system (a Raspberry Pi) and 5 virtual machines on the
local host:

$HOME/tsduck/pkg/build-remote.sh --host raspberry
$HOME/tsduck/pkg/build-remote.sh --host vmfedora --parallels Fedora
$HOME/tsduck/pkg/build-remote.sh --host vmredhat --parallels RedHat
$HOME/tsduck/pkg/build-remote.sh --host vmubuntu --parallels Ubuntu
$HOME/tsduck/pkg/build-remote.sh --host vmdebian --parallels Debian
$HOME/tsduck/pkg/build-remote.sh --host vmwindows --parallels Windows --windows --directory
Documents/tsduck --timeout 20

So, building a release is as simple as running that script. After "some time", all binaries and build log files are
available in the pkg/installers subdirectory.

Be sure to check that all binaries are present. Check the log files if some of them are missing.

4.2.3.2. Creating the GitHub release

Once the binary installers are collected, simply run this command to create and publish the release on GitHub:

$ pkg/github/release.py --create

The current state of the repo on GitHub is used as base for the release. A tag is created with the version number.
The release is created with a explanatory description. All binaries are published as assets of that release.

4.2.3.3. Creating the HomeBrew release

The GitHub release contains binaries for Linux and Windows. On macOS, TSDuck is distributed through
HomeBrew. The binaries for all macOS versions, Intel and Arm platforms, are built inside the HomeBrew CI/CD
pipeline when an updated formula is pushed in a pull request.

After the creation of the release on GitHub, create the pull request for the new TSDuck version in HomeBrew
using the following command:

$ pkg/homebrew/brew-bump-formula-pr.sh -f

Version 3.38-3816 TSDuck Developer’s Guide

55

https://tsduck.io/download/changelog/
https://brew.sh/

The option -f forces the creation of the pull request. Without it, it works in "dry run" mode. It can be safe to start
with a dry run, as a test.

When the HomeBrew CI/CD pipeline has finished to process the pull request, the new version of TSDuck is
available for all flavors of macOS.



Recently, TSDuck has been placed by the Homebrew maintainers in the "autobump" list of
packages. The original projects for the 2600+ packages in this list are regularly monitored by a
Homebrew workflow. Whenever one of these projects publishes a new version, the update of
the formula is automatically done. Next time a new version of TSDuck is published, it should
be worth waiting a couple of days before requesting an update using a pull request, to check
if a similar pull request is automatically submitted by the "autobump" workflow.

4.2.3.4. Updating the version number

Once a release is published, the minor version number of TSDuck TS_VERSION_MINOR must be updated in the source
file src/libtsduck/tsVersion.h.

This is currently not automated and shall be manually updated before the first commit following the publication
of a new release.

4.2.4. Cleanup of long-standing issues

The issues area on GitHub is used to report problems, ask questions, and support any discussion about TSDuck.
When an issue is obviously completed, because a complete answer was provided or a fixed is pushed, the issue is
closed. Sometimes, a plausible response or fix is provided but some feedback is expected from the user to
confirm this. When a positive feedback is provided, the issue is closed.

However, some users never provide a feedback after their problem is solved. In that case, the issue remains open
forever.

To solve this, there is a label named "close pending". When a plausible response, solution or fix is provided, the
maintainer of the project sets the "close pending" label on the issue. It remains open. However, if the issue is not
updated in the next 150 days, it will be automatically closed.

This is achieved by the workflow .github/workflows/cleanup-issues.yml. This workflow is scheduled every week on
Sunday at 02:00 UTC. It runs the Python script pkg/github/close-pending.py which automatically closes all issues
with label "close pending" and no update within the last 150 days.

4.3. TSP design

This section is a brief description of the design and internals of tsp. It contains some reference information for tsp
maintainers.

tsp is designed to clearly separate the technical aspects of the buffer management and dynamics of a chain of
plugins from the specialized plugin processing (TS input, TS output, packet processing).

4.3.1. Plugin Executors

Each plugin executes in a separate thread. The base class for all plugin threads is ts::tsp::PluginExecutor.
Derived classes are used for input, output and packet processing plugins.

4.3.2. Transport packets buffer

There is a global buffer for TS packets. Its structure is optimized for best performance.

TSDuck Developer’s Guide Version 3.38-3816

56

https://github.com/Homebrew/homebrew-core/blob/master/.github/autobump.txt
https://github.com/Homebrew/homebrew-core/blob/master/.github/autobump.txt
https://github.com/tsduck/tsduck/issues

The input thread writes incoming packets in the buffer. All packet processors update the packets and the output
thread picks them at the same place. No packet is copied or moved in memory.

The buffer is an array of ts::TSPacket. It is a memory-resident buffer, locked in physical memory to avoid virtual
memory paging (see class ts::ResidentBuffer).

The buffer is managed in a circular way. It is divided into logical areas, one per plugin thread (including input and
output). These logical areas are sliding windows which move when packets are processed.

Inside a ts::tsp::PluginExecutor object, the sliding window which is currently assigned to the plugin thread is
defined by the index of its first packet (_pkt_first) and its size in packets (_pkt_cnt).

Figure 2. Flat (non-circular) view of the buffer:

When a thread terminates the processing of a bunch of packets, it moves up its first index and, consequently,
decreases the size of its own area and accordingly increases the size of the area of the next plugin.

The modification of the starting index and size of any area must be performed under the protection of a mutex.
There is one global mutex for simplicity. The resulting bottleneck is not so important since updating a few
pointers is fast.

When the sliding window of a plugin is empty, the plugin thread sleeps on its _to_do condition variable.
Consequently, when a thread passes packets to the next plugin (ie. increases the size of the sliding window of the
next plugin), it must notify the _to_do condition variable of the next thread.

When a packet processor decides to drop a packet, the synchronization byte (first byte of the packet, normally
0x47) is reset to zero. When a packet processor or the output executor encounters a packet starting with a zero
byte, it ignores it. Note that this is transparent to the plugin code in the shared library. The check is performed by
the ts::tsp::ProcessorExecutor and ts::tsp::OutputExecutor objects. When a packet is marked as dropped, the
plugin is not invoked.

All ts::tsp::PluginExecutor are chained in a ring. The first one is input and the last one is output. The output
points back to the input so that the output executor can easily pass free packets to be reused by the input
executor.

The _input_end flag indicates that there is no more packet to process after those in the plugin’s area. This
condition is signaled by the previous plugin in the chain. All plugins, except the output plugin, may signal this
condition to their successor.

The _aborted flag indicates that the current plugin has encountered an error and has ceased to accept packets.
This condition is checked by the previous plugin in the chain (which, in turn, will declare itself as aborted). All
plugins, except the input plugin may signal this condition. In case of error, all plugins should also declare an
_input_end to their successor.

Version 3.38-3816 TSDuck Developer’s Guide

57

4.4. Adding PSI/SI tables or descriptors

Adding support for new PSI/SI tables or descriptors is a welcome contribution to TSDuck. Users from various
continents, using different standards, or participating in standardization processes, are in the best position to
implement new tables or descriptors.

We recommend to release these contributions in open source, as part of the TSDuck project.

This section summarizes the main steps when implementing new tables or descriptors.

See chapter 3 for more details on the contribution process.

4.4.1. Code base selection

The main recommendation to start with is: do not develop a new table or descriptor from scratch. Use an existing
and proven one as code base and adapt to your new structure.

To identify the right existing structure as code base, use some of these criteria:

• Short single-section table vs. long multi-section table.

• Flat vs. structured section, with descriptors or not, including substructures with descriptors (e.g. PMT).

• Use of strings, DVB strings, ATSC strings, ISDB strings.

• Public descriptor, DVB private descriptor, table-specific descriptor.

Because the number of possible descriptor tags (a.k.a. descriptor ids) is limited to 256 values, there is no room for
all possible descriptors. For this reason, the various standard organizations use tricks such as extended descriptors,
private descriptors, or table-specific descriptors.

In a MPEG/DVB context, the allocation of descriptor ids is the following:

0x00-0x3E MPEG-defined descriptors

0x3F MPEG extension descriptor

0x40-0x7E DVB-defined descriptors

0x7F DVB extension descriptor

0x80-0xFE Private descriptors

0xFF Reserved, not allocated, typically used as "null" value

4.4.1.1. Extended descriptors

MPEG and DVB separately define the concept of extended descriptors. Because of the shortage of descriptor ids,
each of the two standards have defined an extension_descriptor, typically using their last allocated descriptor id.
This descriptor is a generic envelope for specialized descriptors.

The first byte of the descriptor payload is an extended_descriptor_id which identifies the actual descriptor type. This
allows the definition of up to 256 additional descriptors.

TSDuck does not use any specific type for the generic extended_descriptor. Instead, there is a distinct type for each
form of extended_descriptor. Each of them has its own XML element and C++, just like any other descriptor. The
extended descriptor mechanism is only considered as a binary serialization detail, not a different type of
descriptor.

If you have to implement a MPEG-defined extended descriptor, you may use the HEVC_timing_and_HRD_descriptor
as code base.

If you have to implement a DVB-defined extended descriptor, you may use the supplementary_audio_descriptor as

TSDuck Developer’s Guide Version 3.38-3816

58

code base.

4.4.1.2. Private descriptors (DVB)

In the DVB standard, descriptor ids 0x80 to 0xFE are "private". They are reserved for use by private entities,
typically TV operators, broadcast equipment vendors, Conditional Access Systems (CAS) vendors.

To determine which semantics should be associated with a given descriptor id in that range, DVB defines a
private_data_specifier_descriptor which contains a 32-bit private_data_specifier (PDS). DVB allocates a unique PDS to
any private organization which requests it. See ETSI-101-162 and the DVB services for more details on allocated
PDS values.

In a descriptor list, all private descriptors which come after a private_data_specifier_descriptor are defined by the
private organization which is identified in the private_data_specifier_descriptor. If several private descriptors from
distinct defining entities must be placed in the same descriptor list, several private_data_specifier_descriptor are
allowed to switch from one entity to another.

A descriptor with a tag in the range 0x80-0xFE and no preceding private_data_specifier_descriptor is illegal.

That being said, in practice, the experience has exhibited two families of bugs:

• Rogue signalization: Some organizations ignore this rule and define their own private descriptors, in the
range 0x80-0xFE, without officially allocated PDS value.

• Signalization bugs: Some broadcasters "forget" to insert the right private_data_specifier_descriptor before a
well-defined private descriptor.

• Implementation bugs: Some implementers of receivers (set-top box, TV set) ignore the PDS rule or forget to
check the previous PDS. They blindly interpret some private descriptor based on some expected descriptor id
in the range 0x80-0xFE. If the same private descriptor id is used in the context of another PDS, the receiver
incorrectly interprets the binary descriptor.

All these bugs are real and were regularly found during the development and usage of TSDuck. If you implement
a private descriptor, be sure to follow the rules.

You may use the EACEM-defined eacem_stream_identifier_descriptor as code base.

Most of the commonly used private descriptors are some forms of logical_channel_number_descriptor. The Logical
Channel Number (LCN) is the usual concept of TV channel number, the oldest and most traditional way of
identifying a TV channel. Surprisingly, neither MPEG nor DVB defined it. Therefore, operators or equipment
vendors have to define their own way of identifying LCN’s. For this reason, there is a wide range of variants of
private logical_channel_number_descriptor which all contain the same kind of information. If you implement such a
descriptor, with a similar implementation, your class should be a subclass of AbstractLogicalChannelDescriptor.
Use eacem_logical_channel_number_descriptor as code base.

4.4.1.3. Table-specific descriptors

So-called table-specific descriptors are specific descriptors which exist only in the context of a couple of specific
tables. They usually re-use the tag of a standard descriptor, typically in the MPEG-defined range. Of course, it is
assumed that the standard descriptor, the tag of which has been hijacked, will never be used in those specific
tables to avoid ambiguities.

Let’s take an example, the target_IP_address_descriptor. This is a DVB-defined descriptor which can be used only
inside an INT or a UNT, two DVB-defined tables. The target_IP_address_descriptor uses tag 0x09, which is normally
used by a MPEG-defined CA_descriptor. When TSDuck analyzes a descriptor list and encounters a tag 0x09, it
usually starts to analyze a CA_descriptor, except when the table is an INT or a UNT, in which case it analyzes a
target_IP_address_descriptor.

This situation is supported by TSDuck. If you have to implement such a table-specific descriptor, use
target_IP_address_descriptor as code base.

Version 3.38-3816 TSDuck Developer’s Guide

59

tsduck.html#ETSI-101-162
https://www.dvbservices.com/identifiers/

4.4.2. Affiliation to a standard

Each table or descriptor is defined either by a standard body or an organization, committee or private company.
Check if other PSI/SI from this organization is already implemented in TSDuck. This is important because source
files for PSI/SI are organized by standard.

Tables are implemented in the directory src/libtsduck/dtv/tables, using one subdirectory per standard. The
current subdirectories are atsc, dvb, isdb, mpeg, scte. Currently, only renown standard bodies define tables.

Descriptors are implemented in the directory src/libtsduck/dtv/descriptors, using one subdirectory per
standard. The current subdirectories are the same as tables, plus various organizations such as avs or uwa, plus
private companies which define private DVB descriptors such as eacem, dtg, sky.

Try to find the right subdirectory for your new structure. Create another directory if required.

In that descriptor, you will have to create three or four files (the last is optional). For instance, the MPEG-defined
ISO_639_language_descriptor is implemented as:

src/libtsduck/dtv/descriptors/mpeg:

 tsISO639LanguageDescriptor.xml
 tsISO639LanguageDescriptor.h
 tsISO639LanguageDescriptor.cpp
 tsISO639LanguageDescriptor.names

More details follow in the next sections.

4.4.3. Declaring identifiers

Your table or descriptor must have a 8-bit identifier. You need to add it in the TSDuck source code.

Table ids and descriptor ids are defined in file src/libtsduck/dtv/signalization/tsPSI.h, in enum lists TID and DID,
respectively. The ids are grouped by standard, be sure to add it at the right place.

In the case of a table, if that table is expected on some predefined PID, also add this PID in file
src/libtsduck/dtv/transport/tsTS.h, in the enum list PID.

In the case of a private DVB descriptor, your descriptor is valid only after a private_data_specifier_descriptor which
contains the private_data_specifier (PDS) of the organization which defines the descriptor. Check if that PDS value is
present in file src/libtsduck/dtv/signalization/tsPSI.h, in enum list PDS. Add it if not present.

For TSDuck to display meaningful identifiers, the source tree contains names files, with a .names extensions. These
files associate a unique value with a name. There are several sections (for PID, TID, DID, for instance). In each
section, a value can be present only once and values must be declared in ascending order.

Add the table or descriptor name in the file src/libtsduck/dtv/signalization/tsPSI.names, in sections TableId or
DescriptorId, respectively. Carefully read the comments at the beginning of each section. It explains the encoding
of each unique value.

For table ids, the value includes the standard and the optional CAS_id (useful for ECM and EMM only).

For descriptor ids, the value includes the PDS for private descriptors or the table_id for table-specific descriptors.
Note that, for historical reasons, ATSC and ISDB descriptors are encoded with a "fake" dedicated PDS.

If you have added a new PDS value, add its name in the PrivateDataSpecifier section of tsPSI.names.

If you implement a MPEG-defined or DVB-defined extended descriptor, add the corresponding
extended_descriptor_id in src/libtsduck/dtv/signalization/tsPSI.h, in enum lists with MPEG_EDID_ and EDID_
symbols.

Also add the corresponding name in src/libtsduck/dtv/signalization/tsPSI.names, in sections

TSDuck Developer’s Guide Version 3.38-3816

60

MPEGExtendedDescriptorId or DVBExtendedDescriptorId, respectively.

4.4.4. XML definition

You must define an XML representation for your table or descriptor in a .xml file. Use the selected code base as
reference.

This XML file is an XML model file, as defined in the TSDuck User’s Guide.

A table shall be defined as one XML element inside the following envelope:

<?xml version="1.0" encoding="UTF-8"?>
<tsduck>
 <_tables>
 <my_table_name ...>
 <_any in="_metadata"/>
 ...
 </my_table_name>
 </_tables>
</tsduck>

Note the mandatory <_any in="_metadata"/>.

A descriptor shall be defined as one XML element inside the following envelope:

<?xml version="1.0" encoding="UTF-8"?>
<tsduck>
 <_descriptors>
 <my_descriptor ...>
 ...
 </my_descriptor>
 </_descriptors>
</tsduck>

For attributes and element names, preferably use the exact same names as defined in the standard for your table
or descriptor.

Do not blindly copy the binary structure in the XML description. Define an XML equivalent representation.

For instance, a common pattern for optional fields in binary structures is to define a one-bit foo_flag and a
subsequent optional foo field. The foo field is typically present only when foo_flag is 1. Do not define foo_flag in the
XML structure. Just define a foo attribute and document it as optional.

The template value of XML attributes is a short informal type declaration. For integer values, always start the
description string with uintN or intN, when N is the size in bits of the binary field. This uintN or intN is used by the
automatic XML-to-JSON translation to generate a JSON number instead of a JSON string.

Your .xml file will be automatically grabbed by the TSDuck build system and integrated into the final configuration
files.

4.4.5. C++ class

The C++ header (.h) and body (.cpp) files for the table or descriptor class are mandatory. Start with the selected
code base and carefully replace the structure names.

In the .cpp file, there is a fundamental macro: TS_REGISTER_TABLE() for tables and TS_REGISTER_DESCRIPTOR() for
descriptors. This is a C++ trick which automatically registers your structure in the PSI/SI repository during the
initialization of the module. If you omit this macro, your table will not be recognized.

Version 3.38-3816 TSDuck Developer’s Guide

61

The registration macro may take various forms depending on the type of structure (standard descriptor, table-
specific descriptor, extended descriptor, etc.) Be careful to select a code base with the same characteristics in
order to copy the same type of registration.

4.4.6. Names file

If necessary, you may provide a .names file. This is useful when a field of your structure can get distinct values with
distinct meanings. When displaying a structure, it is more convenient for the user to get a meaningful name
rather than a value.

A .names file is organized in several sections. By convention, use section names which start with the XML name of
your structure, followed by a dot.

Example of the file tsISO639LanguageDescriptor.names, for the ISO_639_language_descriptor:

[ISO_639_language_descriptor.audio_type]
Bits = 8
0x00 = undefined
0x01 = clean effects
0x02 = hearing impaired
0x03 = visual impaired commentary

In the C++ source file, use the inherited static method DataName() to retrieve a meaningful name, with optional
formatting of the value before or after the name.

Example of the file tsISO639LanguageDescriptor.cpp:

void ts::ISO639LanguageDescriptor::DisplayDescriptor(TablesDisplay& disp, PSIBuffer& buf, const
UString& margin, DID did, TID tid, PDS pds)
{
 ...
 disp << ", Type: " << DataName(MY_XML_NAME, u"audio_type", buf.getUInt8(), NamesFlags::FIRST) <<
std::endl;

Your .names file will be automatically grabbed by the TSDuck build system and integrated into the final
configuration files.

4.4.7. Documentation

Your new table or descriptor shall be documented in two ways:

1. The XML structure is documented in the TSDuck User’s Guide (asciidoc format).

2. The C++ class is documented in the TSDuck Programming Reference (doxygen format).

4.4.7.1. User’s guide

The user’s guide must be manually updated.

The asciidoc files (.adoc) for the PSI/SI XML structures are in the directory tree doc/user/si-xml. Just like the source
files, there is one subdirectory per standard. In each subdirectory, there is one single .adoc file for all tables and
one single .adoc file for all descriptors.

Edit or create the corresponding file. If you create a new file, add an include directive in the file doc/user/20D-app-
si-xml.adoc.

Some guidelines:

TSDuck Developer’s Guide Version 3.38-3816

62

• In each file, keep tables and descriptors organized in alphabetical order.

• Copy the surrounding asciidoc syntax from other existing tables or descriptors.

• Remove the enclosing <tsduck>, <_tables>, <_descriptors> structures, just keep your structure.

• In tables, remove the <_any in="_metadata"/>. It is meaningless for the user.

• Add any comment or formatting which makes the result more informative to the user.

At the beginning of the section, add a reference to the defining standard, for instance:

Defined by MPEG in <<ISO-13818-1>>.

The reference between << and >> must be a valid one from the bibliography in file doc/user/20F-app-
references.adoc, for instance:

* [[[ISO-13818-1]]] ISO/IEC 13818-1:2018 | ITU-T Recommendation H.222 (2017):
 "Generic coding of moving pictures and associated audio information: Systems" (also known as "MPEG-2
System Layer").

If the reference does not exist yet in the bibliography, add it. Keep the references sorted in alphabetical order.

4.4.7.2. Programming reference

All public structures and fields in the C++ header file must be documented using Doxygen tags. See examples in
existing structure. This is the way your structure will become documented in the programming reference.

No public element shall be left undocumented. To verify this, generate the documentation and check any error.
Undocumented elements are reported.

• On UNIX systems (Linux, macOS, BSD), run make doxygen.

• On Windows systems, run the PowerShell script doc\doxy\build-doxygen.ps1.

In the initial descriptor of your C++ class, make sure it is properly identified with the right group and standard. For
instance:

//!
//! Representation of a Program Association Table (PAT).
//! @see ISO/IEC 13818-1, ITU-T Rec. H.222.0, 2.4.4.3
//! @ingroup table
//!

or:

//!
//! Representation of an ISO_639_language_descriptor
//! @see ISO/IEC 13818-1, ITU-T Rec. H.222.0, 2.6.18.
//! @ingroup descriptor
//!

The directive @ingroup is used by Doxygen to assign the class in the right group.

The directive @see is important in three ways.

1. It is included in the Doxygen documentation.

2. It helps the future maintainers of the code to find the right documentation and directly the section number

Version 3.38-3816 TSDuck Developer’s Guide

63

where to look.

3. It is also used in the automatic generation of the appendix A of this document.

4.4.8. Tests

There are lots of traps and pitfalls in the coding of a table or descriptor. It is crucial to test it thoroughly.

First, become familiar with the TSDuck test suite as described in section 4.1.4.

Once you have cloned your forked versions of the two repositories, tsduck and tsduck-test, side by side in the
same parent directory, you can implement a test for your table or descriptor.

This kind of test is standardized. The idea is to start from an XML file containing several samples of your table or
descriptor. Then, invoke the common script standard-si-test.sh.

This standard test compiles the XML file in binary, decompiles it to generate XML and JSON, recompiles the
output, inject the tables in a transport stream, extract them in text form, etc. All intermediate results are kept as
reference.

This kind of test is interesting in two ways. First, during the initial test, after development, it is a good tool to
debug the serialization, deserialization, binary and XML. Second, the reference outputs will track any future
regression.

For instance, the test 027 is the reference test for SCTE 35 tables and descriptors. All tested structures are in the
file tsduck-test/input/test-027.xml. The test script tsduck-test/tests/test-027.sh is very simple:

#!/usr/bin/env bash
source $(dirname $0)/../common/testrc.sh
test_cleanup "$SCRIPT.*"
source "$COMMONDIR"/standard-si-test.sh $SCRIPT.xml


In practice, all test scripts for that kind of PSI/SI test are identical. Only the input .xml file
changes.

If your table or descriptor belongs to a set of structures which are already tested in an existing test, you may
simply add your tested XML definitions in the existing test and update its reference output.

Otherwise, especially if you plan to implement several structures, you may create a new test. Just use existing
tests with standard-si-test.sh as a starting point.

Pay attention to the XML structures you want to test. Keep in mind that you test one given structure in all possible
ways, regardless of real applications. Your tested structures do not need to carry meaningful values. You test the
syntax of your table or descriptor, not its semantics. You just want to test code, nothing else.

Here are some guidelines:

• If you test a descriptor, your don’t care about which table it is in. Use a <CAT> for instance, a table which only
contains descriptors and nothing else.

• If you test a table which contains descriptors, use any kind of simple descriptors, ISO_639_language_descriptor
for instance. You do not care if such a descriptor does not make sense in your table.

• If you test a table which contains descriptors, test each descriptor list with zero, one, two descriptors.

• Test optional fields in structures where they are present and in other structures where they are omitted.

• More generally, when your code takes different steps or branches in the presence of different forms of input,
test all possible forms of input.

• Test adjacent fields with different values. If two flags are in consecutive bits in the binary structure, test once

TSDuck Developer’s Guide Version 3.38-3816

64

with a true/false combination and once with a false/ true combination.

• Use integer values which use the full width of a binary field to detect incorrect truncation or size errors. For
instance, in a uint32 field, use value 0xDEADBEEF, for instance, not 0 or 1.

When the result is satisfactory, submit a pull request for each repository, tsduck and tsduck-test. See section 3.2
for more details on that.

Version 3.38-3816 TSDuck Developer’s Guide

65

Chapter 5. Coding guidelines

5.1. Rationale for coding guidelines

In the computing community, there are many ways to develop software, many programming languages, many
paradigms (functional, object oriented, etc.) and many conceptions of the art of programming. Each world has its
own set of coding guidelines. But each world does have coding guidelines.

In software development, industrial or open-source, the keys to success are the management of the global cost of
the software lifetime, the reliability and the security of the software.

• Costs: In the lifetime of a software product, the initial development often costs less than the maintenance.
Consequently, an important requirement of software development is reducing the maintenance cost. And
sometimes this is at the expense of the initial development cost. Writing good and maintainable code may
cost a little bit more initially but the final cost will be beneficial. Writing good and maintainable code requires
a set of coding guidelines which are followed by the whole development team.

• Reliability: The reliability of the software is planned from the design and is achieved through the quality of
the code. The quality of the code also requires a common set of coding guidelines.

• Security: The security of the code has been quite challenged by hackers in the last twenty years. Most attacks
take advantage of flaws in the code, either plain bugs or complex vulnerabilities in code which is otherwise
functionally correct. The experience on those vulnerabilities results in a set of secure coding guidelines.

This chapter defines the coding guidelines for the TSDuck project.

Year after year, the code base of TSDuck has proven to become more robust. The maintenance process improved
the code quality through regular refactoring operations, preserving or improving the modular structure of the
project. Modifications, improvements or implementation of new features were always developed in a very short
time and limited to a local set of source files. Applying the present set of guidelines has been of great help in this
continuously improving robustness.



A previous document named TSDuck Coding Guidelines contained more generic coding rules.
This document was derived from a more general one which was written by the author for
professional software development. Because it was too generic, it is no longer relevant in the
TSDuck documentation set. For reference, a copy is still available online.

5.2. Classification of coding guidelines

There is no unique term for coding guidelines. In the industrial, academic or open-source software, coding
guidelines are sometimes named coding standard or coding rules. But they all refer to the same type of document
and serve the same purpose.

There are several types of coding guidelines. Some guidelines are generic; they describe general software
development practices. Some guidelines are more specific; they apply to details in the writing of source code for
specific programming languages.

Some rules are strictly necessary to write good code and are not negotiable in any environment.

Some others are simple coding conventions, for instance the naming conventions for identifiers. Even within one
single programming language, many different coding conventions exist and are strongly advocated by their
respective supporters. These types of conventions can be initially discussed but, once they are selected, they must
be adopted by all developers in the organization or project.

Several sets of conventions can be individually satisfactory but using several sets of conventions in the same
software project is not. Good and maintainable software must be easily understandable and consistent coding
conventions are a key part of the understanding of the code.

TSDuck Developer’s Guide Version 3.38-3816

66

https://raw.githubusercontent.com/tsduck/tsduck-legacy-doc/master/legacy/tsduck-coding.pdf

This document adopts the following classification:

• Rule: A mandatory regulation which must be applied without exception in all contexts. It cannot be
negotiated or modified. A rule is preceded by [Rule] in the text.

• Recommendation: A regulation which must be applied everywhere it is possible. But there are circumstances
where it is difficult to apply. Situations where a recommendation must be applied or, on the contrary, may be
omitted shall be documented. A recommendation is preceded by [Recommendation] in the text.

• Convention: A mandatory regulation which must be applied without exception. Alternative conventions could
have been possible in the first place but a single one had to be chosen. A convention is preceded by
[Convention] in the text.

We use the word guideline as a generic term for rule, recommendation and convention.

In this document, we group conventions in separate sections. This separation is made on purpose to highlight the
fact that rules and recommendations are not negotiable while conventions may differ between projects.

5.3. Generic coding guidelines

This section describes generic coding practices, independently of any specific programming language or
framework.

Some of these guidelines may appear very generic in fact and evaluating the correctness of a code regarding
these guidelines may be sometimes subjective or biased. However, this document prefers to be helpful rather
than normative. And while generic advices can hardly be considered as normative, they may be quite helpful to
the developer.

5.3.1. Generic coding rules and recommendations

5.3.1.1. Software architecture

[Rule] The software architecture shall be driven by the following keywords: Simplicity, Clarity,
Modularity, Independence, Reusability, Maintainability.

• Simplicity: The simpler a system is, the more reliable it is. Apply the well-known KISS principle: Keep It Simple
and Stupid.

• Clarity: The software architecture shall be immediately understandable. And so must be the source code.
Anyone shall be able to understand the source code without effort, especially new contributors.

• Modularity: Break the design in smaller modules which are easier to maintain and understand.

• Independence: The modules should be potentially used independently of others. Modularity is not the
synonym of independence. Some modular systems have so many dependencies between modules than the
modularity is only an artificial division of a very big spaghetti-like module. Typical pitfalls which break the
independence of modules are the usage of global variables, excessive usage of implicit state, module
interdependencies, etc. Drawing a dependency graph of the modules can give a first impression; if there are
loops in the graph, the independence principle is broken.

• Reusability: Reusability is the key to software cost reduction and speed of maintenance. A module shall be
written in a generic way. It should be reusable in environments which are different from the original one.
Each time you write a module, try to understand what is specific to your situation and what could be used
outside of it. Write the module for the general case with a customized behavior from parameters and express
your situations by applying parameters to your generic code. The DRY principle ("Don’t Repeat Yourself") is an
application of reusability.

• Maintainability: This is a corollary to all the preceding points. The maintainability is the key to success in
software development, industrial or open-source.

Version 3.38-3816 TSDuck Developer’s Guide

67

5.3.1.2. Source code structure

This section describes the common rules on the structure of source files. Additional rules may be defined for
various programming languages.

[Recommendation] A source file should be limited to a maximum of 500 lines. For complex modules
which can be hardly split into smaller pieces, 1000 lines is the maximum.

These limits are raw file size, including blank and comment lines, not only source code (but excluding the standard
legal headers).

As explained before, simplicity is a key to maintainability. If your file is larger than these limits, it is probably poor
quality and you should consider redesigning it.

This is a recommendation rather than a rule because there are pathological cases where it makes sense to list
many cases, or rich generic classes with a lot of features and doxygen comments. We must admit that there are
some of them in the TSDuck source code.

[Rule] All source files shall start with a legal header which references the copyright and license
information for the project.

All lines in the header must start with the appropriate syntax for comment lines in the language of the source file.

Application to TSDuck: the text of the legal header is the following:

TSDuck - The MPEG Transport Stream Toolkit
Copyright (c) 2005-2024, author's first name and last name
BSD-2-Clause license, see LICENSE.txt file or https://tsduck.io/license

[Rule] A source file shall contain at least 30% comments. More precisely, after removing the initial
standard legal header and all blank lines, at least 30% of the remaining lines in the file shall contain
non-empty comments.

As explained before, clarity is a key to maintainability. A new maintainer shall not need to analyze the code to
understand it, reading it should be sufficient. The code, its structure and its environment shall be described in
comments. Comments must be everywhere, not only in the file header. Write comments both for you and for
future maintainers. Explain why you invoke a function; do not assume that the maintainer knows what it is. If you
use a specific code structure for a good reason, explain it in comments to avoid a future maintainer to "optimize"
it later, breaking your intent.

Comments shall explain the code, not paraphrase it. Do not explain what the code does (no need to explain that
i++ increments the variable i). Explain why it does it that way, at that point of the code.

This 30% comment requirement does not take into account the standard legal headers. The 30% proportion of
comments shall apply to the description of the specific code and its environment, after removing all standard and
non-significant headers. The standard comments which are processed by automated documentation tools such as
Doxygen or Javadoc are included in the 30% comment requirement since they describe the actual code.

In the TSDuck source code, C++ source files (.cpp files) contain slightly over 30% comments and blank lines. In the
C++ header files (.h files), this proportion is raised to 60%, mostly thanks to Doxygen comments.

[Rule] Comments should be written at the same time as the code and not after the code is completed.

When you write the code, you know precisely what you are doing at this specific time. This is the right time to
explain what you are doing in comments. When the code is completed, some important thoughts you had when
writing the code are already gone.

[Rule] Use source code self-documentation tools such as Doxygen or Javadoc.

These tools use specially formatted comments to produce a set of HTML pages or PDF documents with the
documentation of all the code. With these tools, it is no longer necessary to write separate detailed design
documents; the documentation is automatically extracted from the code.

TSDuck Developer’s Guide Version 3.38-3816

68

https://tsduck.io/license

This is both a cost reduction and a guarantee that the code is consistent with the documentation.

Document everything correctly. A common pitfall is to build the minimum comment structure so that the
documentation tool does not complain. The result is a short and obscure description of a function and a list of
parameters without description. This is useless. Generate the documentation and read it or have it read by
someone else. If the result is not satisfactory, complete the self-documentation comments.

[Rule] Maintain the code self-documentation.

Another pitfall is to modify the code later without applying the corresponding modifications (if necessary) to the
self-documentation comments.

5.3.1.3. Revision control system

[Rule] All source files shall be managed in a revision control system.

The TSDuck project is managed using Git. The reference repository is on GitHub within the organization named
tsduck [TSDuck-Source]. Additional Git repositories are available in the same GitHub organization for unitary tests,
third-party device drivers, etc.

[Rule] Each developer shall be accurately identified in the revision control logs. The identification
includes the real name of the developer and his e-mail address.

This is necessary for accurate history tracking.

Example: Git tries to guess the real name and e-mail address of the author of each commit. However, the results
are not always brilliant. A safe way to set the proper user identification for git is through the following shell
commands:

$ git config --global user.name "Firstname Lastname"
$ git config --global user.email "username@domain.name"

The modifications are permanent. They are saved in the file $HOME/.gitconfig.

[Rule] Keep the source code repository clean and well organized. Specifically, ensure that dirty or non-
original files are never pushed into the repository: temporary files, binary files, compilation products
and more generally everything that can be regenerated from source files in the repository.

Most revision control systems have automatic ways of excluding dirty files, typically specifying file naming
templates.

With Git, excluding dirty files is achieved through .gitignore files. See the man page gitignore(5) for more
details.

Executables and objects are compilation products, not sources. They should be ignored in most cases. But UNIX
executable files have no defined suffix. It is not possible to set up a global rule to ignore them (like ignoring all
*.exe in Windows). Thus, in each directory where one or more executables are produced, there must be a local
.gitignore file which contains the exact names of the executables to ignore.

Binary objects or libraries (*.o, *.a, etc.) are ignored by the global rule, at the root directory of the project. When a
directory contains a third-party binary for which no source is available, this binary must not be ignored. There
must be a local .gitignore file which contains a "not" (!) directive to avoid ignoring this file.

Example: Content of a local .gitignore file illustrating these rules:

Executable files to ignore
my_app
other_app

Third-party binary library to include in the repository (not to be ignored)

Version 3.38-3816 TSDuck Developer’s Guide

69

!libthird.a

5.3.1.4. Internationalization

[Rule] All elements in a source file shall be written in English. Comments are in English. Identifiers use
English words.

Whether you like it or not, English has replaced Latin as the standard international communication language for
decades. As of today, Klingon is not yet eligible as a valid international communication language.

[Rule] Text messages and output shall be written in English.

Generally speaking, if there is a need for internationalization, external localization files shall be used for non-
English messages. There are standard methods for this in the various environments and programming
languages. This rule is particularly important for GUI applications which are used by the general public.

Since TSDuck is a very technical project, it is used by engineers who have at least some understanding of English.
Consequently, there is no internationalization of the messages in TSDuck.

5.3.1.5. Modularity and compatibility

[Rule] Modularity is a contract definition. Define the contract and respect the contract.

A module shall be clearly defined by a public interface. This interface defines a contract between the module and
its users. This contract shall be clearly described in the module interface, typically in the self-documentation
comments. Whenever the module is modified, respect the original contract.

[Recommendation] Always preserve ascending compatibility.

A contract is a contract and you should not be not allowed to break it. If you make substantial modifications in an
existing module, you may add features but you should not remove features or change the contract of existing
features.

As a general rule, you must ensure that all existing code that could have used your module still compile and work
correctly without modification.

For projects with a long history, this recommendation is not always easy to apply. When adding many features or
restructuring poorly designed modules, preserving ascending compatibility may create chaos in the code, making
it more difficult to maintain in the future.

So, the right balance shall be found. It also depends on the nature of the project. A standard library which is used
by thousands of developers and maintained by a large team shall prioritize ascending compatibility. Libraries with
very few maintainers and not too many users may choose to prioritize the maintainability of the code, at the
expense of ascending compatibility.

TSDuck belongs the latter category. TSDuck went through several code cleanup cycles, taking advantage of new
standard features in C++11 or C++17. In these operations, old features were removed to simplify the code base.

[Recommendation] Use Object Oriented Design (OOD) wherever it is possible.

TSDuck is developed in C++ and takes advantage of all OOD features of the language.

The Java and Python bindings follow the same principles.

[Rule] Do not expose implementation details.

The interface of a module or class shall expose only public declarations which are part of the contract.
Implementation details shall be hidden. Not only undocumented, but logically hidden. Even if you do not
document them, someone will discover them in some definition or header file and may use them. Application
code trying to use implementation details should not compile.

In C++, implementation details shall be implemented as private fields and methods in classes.

TSDuck Developer’s Guide Version 3.38-3816

70

[Rule] Expose opaque data types only.

This is an application of the preceding rule. If you need to expose the existence of a data type, you should hide its
internal structure. Some fields may be strictly private, for internal use of your module. Some fields may be read-
only for the user. Some fields may be modifiable by the user but with some control from your implementation.

And in the future, you may need to redesign the structure of the data type but you will also need to preserve the
contract, preserve the logical access to these fields.

Thus, do not expose public fields. Use accessors, also named getter and setter methods.

If you think that this is a loss in performance, you are wrong. Most compilers have the ability to inline the code of
a function. If you define an inline accessor method, the generated code will be only a data access. You get the
same performance as a public exposure of the field but with a better contract and better maintainability of the
code.

If you think that coding and documenting accessors is boring, well, you are right. But many IDE’s can do most of
the work automatically for you.

[Rule] Global variables are evil. Do not use them.

Global variables break the contract of a module. They also break the independence principle. And they also break
the reusability principle.

[Recommendation] Static variables are evil. Avoid using them.

Static variables (in C parlance) are slightly different from global variables since they are not shared between
modules. But in the OOD approach, a static variable is shared by all instances of its module. Most of the time, this
breaks the reusability principle.

If some kind of persistent unique data is necessary, prefer the singleton design pattern over the static variable.

5.3.1.6. Naming conventions

This section lists a few generic naming conventions which apply to all programming languages. For rules which
specifically apply to C++, see section 5.4.2.3.

Usually, naming is addressed by interchangeable conventions. However, these conventions shall be managed by
higher level common sense rules.

[Rule] Use meaningful names which are immediately understandable by the reader or maintainer.

Example:

int logicalFileIndex; // OK, self-explanatory
int logical_file_index; // OK, just another naming convention
int lfi; // Questionable. Is LFI a really widely used acronym for Logical File Index?
 // Or is it just your own convention?
int i; // OK if this is just a loop index in a small function.
 // WRONG if this is a Logical File Index

[Rule] Do not use names which differ only in letter case, differ by one character only or too similar.

This is confusing for the reader and error-prone for the maintainer.

Counter-example: The following sets of identifiers can be easily confused.

int broadcastIndex; // lower case 'c'
int broadCastIndex; // upper case 'C'

int counter;
int counters[10]; // trailing 's'

Version 3.38-3816 TSDuck Developer’s Guide

71

int index1: // digit 1
int indexl; // lower case 'L'
int indexI; // upper case 'i'

5.3.1.7. Coding principles

[Rule] RTFM. Read The F… Manual. Read the documentation of all functions, classes or libraries you
use.

This is such an obvious rule that it should not be worth mentioning. However, experience proves that it is not
always followed.

Each time, all the time, really, read the corresponding documentation before invoking a function. Even if this is a
function you personally developed some time ago. Understand the error cases, the returned error codes, the side
effects, the exact usage of the parameters, etc.

Get prepared for reading documentation. Have a shell window ready for a man command, a browser with prepared
bookmarks pointing to the online help, Doxygen or Javadoc pages. When coding on a secure network which is not
connected to the Internet, make sure that a copy of all online documentations is available on a server within the
secure perimeter.

[Rule] If it ain’t broken, don’t fix it!

Sometimes, a programmer reads some code and finds it clunky. Some programmers cannot resist the temptation
to "fix" the ugliness of the code. This is a dangerous practice. In some cases, this modification may introduce a
bug and turns a clunky but perfectly functional code into a buggy one. In front of an existing and operational
code, in the absence of other intent such as refactoring or generalization, the question shall never be "is it
elegant?" but "does it work?" And if it works, do not modify it.

As a consequence of this rule, do not rewrite existing code for the sole purpose of applying coding guidelines.
When the coding guidelines evolve, it would be both counter-productive and dangerous to review and modify the
existing code base to retrofit the new coding guidelines. The coding guidelines apply only to new code or code
which is modified for valid maintenance reasons.

[Rule] Do not uselessly over-optimise without profiling.

Do not make hypotheses on the performance of the code. Do not write more complicated code because you think
it will be faster. You do not know what the compiler will generate; only the compiler knows. Let the compiler
optimize the code. Recent compilers are very good at optimization.

Even if a local construct is slightly more efficient, you do not know the actual impact on the global execution time.
It is dangerous to write more complicated code to gain 0.001% of execution time. On the contrary, because the
code you write is more complex, it is more error-prone and more complex to maintain.

Write the code using a clean structure. When the final application code is ready, do some profiling in the real
context of the application. This will give you the actual bottlenecks in the code. Then, you will know which parts of
the code are worth optimizing.

[Rule] Write endian-neutral code. Make sure your code works identically on big-endian and little-
endian processors.

Never assume that a piece of code will work forever on the same type of processor. Even embedded code will
eventually be ported on other platforms.

Some CPU architectures are little-endian (Intel), some are big-endian (SPARC, IBM s390) and some can work in
either mode (Arm, PowerPC, MIPS). To make provision for future ports, make sure that your code is not
dependent on a specific endianness.

The endianness applies only to integer, floating-point data, UTF-16 and UTF-32 characters strings. ANSI and UTF-8

TSDuck Developer’s Guide Version 3.38-3816

72

characters strings, cryptographic keys and other types of raw data do not have any endianness; they are just
suites of bytes.

The endianness only matters for external data interchange or storage. Write or use serialization and deserialization
libraries to switch back and forth between the native and external representations of data. Each programming
language has specific ways of handling this gracefully.

Do not make any assumption about performance. For instance, if you handle external data in little-endian
representation and your code targets a little-endian CPU, do not avoid serialization routines simply because you
think that this would add a useless overhead. Well-designed serialization libraries do not add any overhead when
the native and target representations are identical. In this case, the serialization and deserialization routines are
inlined empty functions. But using them in the source code is beneficial. When you port the code to another
platform with the opposite endianness, the program will work correctly without modification.

It is difficult, and sometimes impossible, to test that a program is truly endian-neutral, especially when the native
and external data representations are identical. When possible, test your code on a little-endian and on a big-
endian platform from the beginning.

In the case of MPEG transport stream, most data are serialized in big-endian order. TSDuck provides low-level
serialization functions for individual values and high-level classes for serialized data buffer management. Make
sure to always use them.

Nowadays, most commonly used platforms are little-endian. The only well supported big-endian platform is IBM
s390x (this is one of the three best available Linux distros, with Intel and Arm). It is difficult and expensive to
obtain IBM s390x hardware. However, TSDuck is periodically tested on emulated IBM s390x using qemu.

[Recommendation] Use design patterns.

A number of design patterns are available in the literature. These patterns are proven constructs. Do not invent
hazardous new designs, use proven design patterns. See [GAMMA] for instance.

5.3.1.8. Secure coding

[Rule] Do not assume anything.

This is the common root of many security flaws.

• Do not assume that the caller has checked a piece of data, check it.

• Do not assume that this object is in such state because you think that this is logical in this context, check it.

• Do not assume that a connection is established, check it.

• Do not assume that a buffer has such minimal size, check it.

• Do not assume that this pointer is non-zero, check it.

Etc. etc. etc.

[Rule] Do not trust any other code.

This is a corollary of the preceding rule: do not assume that a function does what its documentation says it should
do. Specifically, if there is a simple way to improve the robustness and security of your code by checking what the
other code did or returned, then check.

[Rule] Avoid temporary solutions or quick & dirty fixes.

If you are tempted to write a temporary fix to a problem, do not do that. Take your time and implement the good
and final solution right away. Otherwise, because of the daily workload, you will delay the final solution, then you
will forget about it and finally your temporary (and most certainly insecure) fix will become permanent.

Counter-example: A well-known product had a random number generation routine which was used to initialize
cryptographic operations. The body of this routine was merely something like return 3;. It is clear that the
developer intended to implement a proper solution later. But it never came.

Version 3.38-3816 TSDuck Developer’s Guide

73

[Rule] Inputs are evil. Never trust inputs. Check all inputs.

When you write a module, the inputs you receive come from an untrusted world by definition. You must always
check all inputs. Addresses shall be validated (check null pointers, alignments and range constraints). Numerical
values shall be checked for allowed ranges. The size of memory areas and buffers shall be checked. C-strings shall
be checked for null termination. The format of special strings shall be checked (date and time, request, etc.)

All functions shall check the validity of all inputs, always, without exception.

[Rule] Check all intra-application inputs also, at all levels.

Do not assume that the inputs of a function are valid simply because the caller is part of the same application. The
caller code may have bugs. The caller code may be modified later and introduce new bugs. Your function can be
reused in another context (remember that we encourage reusability) and the new caller may have bugs.

[Rule] Buffer overflow is your enemy. Check buffer sizes all the time.

If there is any theoretical, practical or syntactical possibility that some data could be larger than the memory area
where you are going to copy it, check the data size, the index or whatever.

Use the capabilities of your programming language to define safe buffer objects with well-designed primitives
instead of using raw memory buffers.

[Rule] Pay attention to the stack usage in a multi-threaded environment.

In a multi-threaded environment, all threads are not equal. The size of the stack of the main thread is often
"unlimited", or at least extremely large, in the multi-mega-byte range. On the contrary, the size of the stack of all
other threads is constrained. The default size depends on the platform but it is in the multi-kilo-byte range, much
smaller than the main thread.

When you write a function, always remember that it will be potentially used in various environments, single-
threaded or multi-threaded, with small stacks or large stacks.

Allocating very large objects on the stack may lead to unpredictable results if they overflow the current stack. If
you are lucky enough, the implementation allocates non-accessible guard pages of memory before and after the
stack of all threads. Thus, if you overflow a stack by a few bytes, the program will crash with an access violation
error. However, if you allocate a very-very large object on the stack, the start of the object may step over the
guard pages and lie into the stack of another thread. Thus, accessing the highest parts of your local object, you
will corrupt local objects in other functions executing in another thread. Finding such a bug is a nightmare.

[Rule] Limit of size of local variables and all data which are allocated on the stack.

This is a corollary of the previous rule. Allocating large objects on stack may overflow the stack of a given thread.
Large local objects shall be dynamically allocated on the heap and released before going out of scope.

[Rule] Always explicitly specify the size of the stack of all threads you create.

This is another corollary of the same rule. If you do not explicitly specify the size of the stack of a thread, it will get
the default size which is defined by the implementation. And this size is typically different from one platform to
another. This means that your code is not deterministic. It may run on one platform and crash on another.

Be very conservative when computing the required size of the stack of a thread. Do not try to be too clever. It is
useful to carefully compute the accumulated sizes of all local objects in all nested functions. But what should you
do with the result? Clearly, do not use it as the stack size. The stack is cluttered with many stack frames or
temporary working data which are allocated by the compiler. This extra size depends on the platform, the ABI, the
compiler, the compilation options, etc. In practice, you cannot accurately compute the required stack size. So, use
various sources of information. Compute your local data sizes, run tests and measure the maximum stack size
and, at the end, double it just in case.

When you define an API, there are cases where the user passes the address of a handler or callback, some code
which is developed by the user but which is invoked by your library. If your library creates internal threads and
some user handler or callback is invoked in the context of these threads, how do you compute the stack size of

TSDuck Developer’s Guide Version 3.38-3816

74

the threads you create? This cannot be transparent to the user. In the API of your library, you must give a way to
specify the required stack usage of the user handler. The user shall be able to pass the handler code address and
the corresponding required stack usage of his handler. Internally, to compute the stack size of your threads, you
must add your own usage and the user’s usage.

[Rule] Always check error codes. Take appropriate action and error processing.

Most functions return an error code or some indication that the processing failed somehow. Read the
documentation of the function and always handle error cases.

This is specifically important for memory allocation routines.

But there are less trivial cases.

Example: Consider file management.

• We probably always check the error code which is returned by a file opening or creation operation because
we anticipate the risk that the file does not exist or we have no permission to create it.

• When reading from a file, we generally always check the returned error code because we can reach the end of
file at any time.

• However, how many of us check the error code which is returned by a write operation? Nonetheless, writing
to successfully opened files can fail at any time, because the volume is full, because the device has been
removed, etc. In some cases, failing to write critical data such as transaction information or cryptographic
keys without noticing can have disastrous effects.

[Rule] In case of error, fail safely.

When writing complex functions or module, you may invoke hundreds of external functions. Any of them can
return an error situation. In the meantime, you may have opened, allocated, locked or somehow initialized many
resources. If each error processing is individual, the code is bloated and potentially insecure.

Write a common error processing path which checks which resources should be cleaned and which safely cleans
them.

Object-oriented languages can greatly help you in this process. Carefully designed destructors should always
automatically clean up resources.

[Rule] Don’t write spaghetti-like code, write state machines.

Avoid deeply nested if … then … else structures. Avoid multiple processing of the same cases in various
places of the code. When applicable (and it is more often that you may think), redesign the code as a state
machine.

[Rule] Physically clean up secure information from memory.

Passwords, encryption keys and less critical information are stored in memory while being processed. Once the
local processing is completed, overwrite the corresponding memory with binary zeroes or random data. If some
memory was dynamically allocated on the heap or on the stack, clean it up before freeing it from the heap or
returning from the current function.

[Rule] Make sure that secure information is never accidentally written to disk in clear form.

Most high-level operating systems such as UNIX or Windows use virtual memory. When the physical memory of
the system is about to fill, the system swaps or paginates, which means that some memory pages belonging to
running processes are temporarily written to disk. If those memory pages contain sensitive data such as
passwords or cryptographic keys, this becomes a security breach.

You must ensure that this never happens.

With virtual memory systems, make sure that all data buffers which contain sensitive data are locked in physical
memory. Thus, the corresponding memory pages will never be written to disk.

Example: On Linux systems, use mlock() to lock a memory area in physical memory.

Version 3.38-3816 TSDuck Developer’s Guide

75

[Rule] Sensitive information shall be exchanged or written to disk in encrypted form only.

Persistent sensitive information usually needs to be stored or exchanged. Storage shall be performed in
encrypted form only. Exchanging sensitive information shall be performed using an approved cryptographic
protection layer, either individually or using a secure tunnel such as TLS 1.3.


All versions of SSL and versions 1.0 and 1.1 of TLS are considered insecure. TLS 1.2 shall be
considered as deprecated.

Encryption keys shall be adequately protected. Passwords and other similar data which need to be compared but
not retrieved in plain form shall not be stored. Instead a salted hash is stored.

Use approved encryption algorithms only. Also use approved security protocols and approved key management
methods only. Never use your own encryption algorithm or security protocol. In case of doubt, ask an expert.

[Rule] Usage of encryption shall be validated by a cryptologist or security expert.

Cryptography is a smoking gun. Encryption and security protocols are hard to secure. Naïve implementations or
careless straightforward usage of encryption primitives are known to be vulnerable to various types of attacks.

All the following mechanisms shall be validated by a cryptologist or a security expert before being used:

• Encryption, decryption.

• Signature generation and verification.

• Encryption keys and other random data generation.

• Key management and protection.

• Security protocols and secure data exchange.

• Usage of hash, nonce and challenge.

• Implementation of cryptographic primitives, choice of cryptographic libraries.

[Rule] Take care of reentrancy in reusable components.

Basic reusable components increase the productivity and the maintainability of the code. However, using the
same component from concurrent threads may lead to race conditions and crashes.

Clearly document whether a component is thread-safe or not.

You may internally implement the required locking feature from the beginning to make the component thread-
safe. However, this may have several drawbacks. There may be useless performance degradation in applications
which do not share the component in multiple threads. Additionally, the concepts of threads and their associated
locking features may be quite different between systems and it is not always easy to write portable thread-safe
code.

One option is to write a simple and non-thread-safe component and then write a thread-safe variant of the
component. Do not re-implement the component in the thread-safe variant. Encapsulate the calls to services of
the non-thread-safe component in the services of the thread-safe variant.

Object-oriented languages with template or genericity features such as C++ and Java may help to write a unique
portable thread-safe implementation. The component focuses on its core features only and accepts
synchronization primitives or objects as template or generic parameters.

[Rule] Use the principle of "least privilege".

This is a fundamental rule of secure software. It means that a code shall not run with any privilege it does not
absolutely require for its nominal execution. In case of security breach, when an attacker takes control of your
code, this attacker shall not be able to take advantage of extra privilege.

Example: If an application manipulates files on behalf of a specific user, the process shall have no more privilege
than this user. More generally, the application shall run with the identity and privileges of the user it works for.

TSDuck Developer’s Guide Version 3.38-3816

76

[Rule] Do not run any code using the root account or any kind of privileged user account.

This is a corollary of the previous rule. Only the operating system or low-level system services need system-wide
privileges. There is usually no good reason to use the root or administrator account or whatever privilege to run an
application. If you really think that you need to be root, you are wrong. If you really insist, see next rule.

[Rule] Drop privileges as soon as possible.

This is another corollary of the same rule. There are rare cases where your application needs to have elevated
privileges for a few very specific operations. In that case, use the following scenario:

• Start the application with the strictly minimum set of privileges which are required to perform the privileged
operations.

• Perform the privileged operations right at the beginning of the application.

• Drop all extra privileges immediately after.

Example: An HTTP server shall listen on TCP port 80 by default. This port number lies in the system range of
ports. On UNIX systems, you need to be root to open this port. If your application implements an HTTP server on
this port, it shall be started as root. At the very beginning of the application, opens the port 80. Do not do
anything else. Do not work on files or system resources which can lead to security problems if the application is
misused. When the TCP port 80 is successfully open, immediately switch to some non-privileged user account like
httpd. The open file descriptor of the socket on port 80 is still valid and can be used from the unprivileged user
account.

[Recommendation] Lock your application in an isolated enclave without access to the rest of the
system.

This is yet another corollary of the above rule. When your application is successfully attacked and control is taken
by an attacker, the "pwned" application shall not be able to access the rest of the operation system.

Define the required environment for your application; define the corresponding boundaries and lock the
environment within these boundaries inside a subsystem without access to the rest of the system. The available
confinement mechanisms depend on the operating system.

Example:

• chroot() on Linux and some other UNIX systems.

• Linux containers (LXC, Docker).

• Virtual machines under control of a hypervisor (VMware, VirtualBox, XEN, HyperV, etc.)

5.3.1.9. Software evolution

[Rule] Avoid copy/paste source code. Use refactoring instead.

Most of the value in software engineering comes from the software reusability and its corollary, development and
maintenance cost reduction. Software reusability means generic and reusable code. But writing clean generic
code right from the beginning is not natural. The process of producing generic code is typically extending and
generalizing existing code into generic software.

This is named refactoring, one of the most important concepts in modern software engineering.

Creating new code from existing code using copy / paste is duplicating, not refactoring. Duplicating code means
duplicating bugs, duplicating maintenance costs and more generally increasing the entropy of the system.

Remember: Copy/paste propagates bugs but does unfortunately not propagate fixes.

[Recommendation] Avoid creating too many branches in the source code repository.

The presence of multiple persistent branches in the source code repository is a wide-scale variant of the copy /
paste syndrome. It multiplies the maintenance costs and ruins the source code consistency. Fixing old bugs

Version 3.38-3816 TSDuck Developer’s Guide

77

becomes a nightmare because of the multiple and divergent branches where the bug is present. Creating a
branch may save some time on the very short term but the extra cost on the mid and long term is overwhelming.

Exception: Creating short-lived branches for exploration, integration or tests may be accepted under the firm
condition that the branch will be rapidly merged into the main trunk and deleted.

5.3.1.10. Compilation errors and warnings

[Rule] Use the most paranoid "warning mode" of the compiler and fix all warnings without exception.

Compilation warnings are never gratuitous. A compiler warning always draws attention to a potential bug. Even if
the code works as expected on the tested platform (i.e. the set of compiler & target execution system) the
incriminated section of code may fail on another platform. Ignoring tons of uncorrected compilation warnings is a
very bad practice. When porting to a new platform, you may have to fix hundredths of bugs that would have been
avoided if the warnings were considered in time.

Even warnings which appear to be really harmless after analysis are dangerous because they create a culture of
ignoring warnings. A listing of hundredths of "harmless" warnings hides new warnings which may indicate actual
bugs.

The most paranoid warning mode depends on the compiler. Different compilers have different options. Some
compilers find warnings that some other compilers don’t. As a general rule, fix all warnings from all compilers.
Your code must not generate any warning on any platform.

[Rule] Turn compilation warnings into errors.

Many compilers have an option which turns warnings into errors. Use it in all code without exception. Thus, the
presence of one single warning prevents the code generation.

[Rule] Understand an error or a warning before fixing it.

This seems obvious but this is too often not applied in practice.

Fixing a compilation error or warning is not simply making it disappear. It is tempting to simply find a
modification in the source code which gets the compilation message away. But is this the right fix? Does this
remove the potential bug that was behind? Did you even understand the potential bug?

Example: You may get an error about a pointer type mismatch or a warning about a comparison between signed
and unsigned integers. Of course, casting one object to the appropriate type removes the message.

And sometimes, this is the appropriate fix. But sometimes, this is not.

You need to deeply understand the situation to decide whether you should use a type cast or modify the code
structure. Do you understand why if (a < b) produces a warning when a is a signed integer and b an unsigned
one (or the opposite)? Do you understand that the underlying risks include an index mismatch leading to a buffer
overflow, one of the major sources of security breaches?

If you don’t, do not fix the code yourself, get help first.

5.3.1.11. Makefiles

This section describes the rules to use GNU Make to build native software on UNIX systems (Linux, macOS, BSD)
only.

[Recommendation] The command make should be usable at any point in the source tree. A makefile
shall be present in all directories of the source tree. The name of the makefile shall be Makefile.

For most projects, the source tree is complex. Sub-projects, sub-systems, test suites are implemented as sub-
directory trees. Some developers work on specific sub-trees while others work the entire project tree (integrators
for instance).

Consequently, running make should be possible anywhere in the source tree.

TSDuck Developer’s Guide Version 3.38-3816

78

This recommendation applies to "logical entities" only. A library may contain too many files to use one single
directory. The source files are spread all over a tree of subdirectories. However, if the compilation of the library is
homogeneous, it is acceptable to have a makefile at the root of the library source tree only.

[Recommendation] As a general rule, when run in a specific directory, the command make shall
recursively operate on all subdirectories.

In the source tree, any directory and its entire tree of subdirectories shall be considered as a consistent sub-
system to build. See the preceding rule.

Consequently, running make somewhere in the source tree shall build the corresponding subsystem, meaning the
current directory and all subdirectories, recursively.

The setup from a common file shall provide the required tools to simplify this process (see next rule).

When a directory is simply an intermediate level where there is nothing to build locally, simply include the
common file and nothing more. The first target in the common file shall recurse into the subdirectories.

[Recommendation] All makefiles shall include a common file. This file contains the common set of
rules, variables, options and targets which are used by all projects.

The actual content of this common makefile is outside the scope of this section. Use a relative path to include the
common file since the source code repository can be checked out at different locations on different systems.

Example:

include ../../Makefile.inc

In the TSDuck source code, there is a file named Makefile.inc at the top level of the source tree. It is included by
all makefiles, at all levels.

[Rule] Do not try to explicitly enumerate the header file dependencies of C++ files. Setup an automatic
dependency resolution system.

It is difficult to manually maintain such dependencies. Include directives are added and removed from nested
header files and there is no reliable way to manually maintain this on the long run. This can lead to subtle bugs
when a module is not recompiled simply because its dependency on a recently updated header file was missing.

The idea is to automatically generate a text file module.dep which contains a makefile dependency rule for each
module.cpp. The module.dep file lists all header files which are directly or indirectly included by module.cpp.
Generating such a file is a feature of the C preprocessor (at least with GCC and Clang).

All .dep are automatically included in the makefile. The makefile automatically regenerates obsolete .dep before
including them. This is possible using the GCC or Clang compilers and GNU Make.

In TSDuck, this system is implemented in the top-level Makefile.inc.

Other building systems such as cmake, qmake, MSBuild (Microsoft Visual Studio) implement their own automatic
dependency resolution system. Use the one that suits you or use the above method with plain makefiles, but do
not try to maintain the dependencies manually.

[Rule] Do not try to explicitly enumerate all source files. Setup an automatic file discovery system.

This rule is similar to the previous one. In a large system, with many source files (there as 2300 source files in
TSDuck), it is easy to forget to add new or moved files.

Some source files are not explicitly referenced in the application. In TSDuck, this is the case of all descriptors,
tables, filters or plugins. There are hundredths of them and they register themselves in a central repository upon
initialization. This means that omitting to build such a source file will not prevent the application from being built.
However, subtle bugs will emerge from the absence of a module.

This is why this rule is not a matter of lazyness, avoiding to list source files. This is a functional and security
requirement.

Version 3.38-3816 TSDuck Developer’s Guide

79

Tools such as GNU make have features to explore the source files. There are heavily used in the TSDuck makefiles.
Simply adding a source file somewhere in the directory tree under src/libtsduck automatically includes it in the
build process of the TSDuck library. Similarly, adding a source file in src/tsplugins or src/tstools automatically
builds a new plugin or tool.


Automatic discovery of source files is sometimes a disputed topic. Some developers advocate
the explicit listing of all source files in Makefile or CMakeLists.txt. This is usually the result of a
lack of experience in very large and dynamic projects.

5.3.1.12. Unit testing

[Rule] Use unitary and non-regression tests automation.

Use a unitary testing framework (Cunit, CppUnit, Junit, etc.) For each module, build the corresponding unit tests
and integrate them in the framework. Cover most common legal, illegal and limit cases in unit tests.

With TSDuck, the test suite is split in two parts. The first part addresses low-level unitary tests, typically for C++
classes, using a dedicated testing framework named TSUnit. The second part includes non-regression tests for
TSDuck commands and plugins. See section 4.1 for more details.

Use a continuous integration framework (Jenkins, for instance) to run all unitary tests nightly and report failures.

With TSDuck, continuous integration is managed using GitHub Actions. See section 4.2 for more details.

[Rule] Use a Test-Driven Development (TDD) approach.

Using TDD, each module is written in parallel with its unitary tests. Modern methods such as Agile or eXtreme
Programming (XP) advocate that the module and its tests shall be developed in parallel by distinct developers.

The typical scenario is the following:

• Create the module in the main development area. The module is initially empty. Make sure it is compiled and
inserted in the main product (library, executable, whatever).

• Create the corresponding test in the unitary tests area. Make sure that the test suite is correctly built and
executed, although the test suite is initially empty.

• Develop one feature of the module.

• Develop the corresponding unitary tests.

• Run the tests and debug all potential problems.

• Write another feature and its tests.

• And so on.

This approach has several advantages:

• The developer is forced to define a clear API of the module from the beginning. Otherwise, the unitary tests
are difficult to define.

• In case of failure, the unitary tests provide a simple environment to debug.

• The module is immediately inserted in the automated non-regression tests. During further developments of
the module, if you later break something that was previously tested, the new bug will be automatically
caught.

• The integration time is reduced since each module is individually tested at development time.

[Rule] Add new tests for each fixed bug.

Each time a bug is found beyond unit testing, in integration phase or even production, there is a bug in the code.
But there is also a bug in the unit test suite because it failed to catch the bug in the code.

TSDuck Developer’s Guide Version 3.38-3816

80

The proper fix scenario is:

• Fix the unit test suite first: Add a unit test which exhibits the bug.

• Run the unit test suite and verify that it fails (the bug is caught).

• Fix the application code.

• Re-run the unit test suite and verify that it passes.

This method is also well suited to fight the "resurrecting bug syndrome". We have all encountered situations
where a bug was fixed in the past but reappears later. This is usually due to some human error with the
configuration management system. By enriching the unit test suite with test cases for all known bugs, we are able
to detect the resurrection of outdated buggy versions.

5.3.1.13. Integration of open source software

[Rule] Always check the license of Free and Open Source Software (FOSS) before using it. In this
context, "using" means integrating and linking with FOSS modules as well as copy / paste of FOSS
source code.

TSDuck is open-source software. So, it may seem weird to worry about integrating other open source software.
However, all open source software are not equal in terms of usage and integration because they use distinct, and
sometimes incompatible, licenses.

Today, a vast amount of generic or reusable software is available for free ("free as a beer") in the form of Free ("free
as in freedom") and Open Source Software.

Several topics must be studied when using FOSS:

• The license of your software (FOSS or not).

• The license of the FOSS you plan to use.

• Your usage of that FOSS.

• The planned deployment of your software.

Many different types of licenses exist for FOSS. The Wikipedia article "comparison of free and open source software
licenses" lists more than 40 different licenses. Some of them are obscure or written by legal illiterate programmers
and are difficult to understand. Actual legal cases which are based on these licenses are disputed or even
contradictory. Therefore, do not underestimate the difficulty.

Generally speaking, there are two main categories of FOSS licenses: permissive licenses (BSD License for instance,
as used by TSDuck) and invasive or copyleft licenses (GPL for instance). While the former may be safely used in
proprietary software with some care, the latter cannot.

The way the target FOSS is used is also important. A license may apply differently when the FOSS is copied /
pasted in source form, statically linked or used as a side component. The LGPL variant of the GPL is typically
designed for dynamically linked libraries. But some libraries are LGPL while others are GPL. And some cases are
borderline. Dynamic reference (dlopen()) of GPL’ed shared libraries on Linux is a disputed subject for instance.

Because the TSDuck source code is released under the BSD-2-Clause license, it is usually permitted to copy and
paste a few lines of code from another project which is released under another permissive license. This license
must be compatible with the BSD-2-Clause license. Don’t forget to check and take any requested action, such as
mentioning the original author, software, copyright or license. However, it is not permitted to copy source code
which is released under a restrictive license such as GPL or LGPL. These licenses are not compatible with
permissive licences such as the BSD licences.

Finally, the type of deployment of your software matters. For proprietary software which is distributed outside the
company where it is developed (commercially or even for free), the license of the FOSS applies. But for internal
proprietary tools which are never distributed, you may usually do what you want. This rule does not apply to
community projects such as TSDuck but it is worth remembering.

Version 3.38-3816 TSDuck Developer’s Guide

81

https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

As a rule of thumb, FOSS with a permissive license such as TSDuck may freely use other FOSS with another
permissive license. However, using FOSS with a restrictive license must be done with care:

• LGPL libraries can be accessed through dynamic linking only. Static linking or dynamic loading (dlopen()) are
prohibited.

• GPL applications can be started through exec() system calls or equivalent.

• GPL libraries cannot be used.

As an example, libreadline is one of the few libraries with a GPL license, not LGPL. As a consequence, a BSD-
licensed software such as TSDuck cannot use it. Fortunately, there is an equivalent library named libedit with
almost the same features as libreadline and a BSD license. Therefore, TSDuck uses libedit instead of
libreadline.


In practice, libedit has been developed only because of the unfriendly license of libreadline.
Similarly, many new software now avoid the GPL license.

In all cases, this subject is too complicated for us, the developers. In case of doubt, get a legal advice first.

5.3.2. Generic coding conventions

This section is present to fulfil the required separation of immutable rules and recommendations from potentially
replaceable conventions, as explained in section 5.2.

5.3.2.1. Control characters

[Convention] Use exclusively line-feeds (LF, '\n', 0x0A) as line delimiters.

This is the usual UNIX vs. Windows or LF vs. CR-LF line format. All compilers on Windows understand files with LF
as line delimiters. On the contrary, some compilers or interpreters in the UNIX world have problems with CR-LF
line delimiters. The bash shell, for instance, considers the CR as part of the line.

Most editors and IDE’s have an option to force the usage of LF as line delimiters, even on Windows systems.

Automatic clean-up scripts should be used on a regular basis on the code base to convert CR-LF sequences into
LF.

Exception: When working with Git, it is possible to automatically switch back and forth between LF and CR-LF
during check-out and commit on all or selected types of text files. This feature is managed though the autocrlf
configuration option and .gitattributes files in the repository tree. If you use that feature, make sure that text
files are committed with LF lines. If you want some Windows-specific text files (such as .sln or .vcxproj files) to be
committed with CR-LF, make sure to properly reference them in a global .gitattributes file, as used in TSDuck.

[Convention] Do not use the tabulation character, use spaces.

In source code, the indentation is essential. It is tempting to use tab characters to indent. However, the size of a
tab character may vary between tools. Most system tools use 8 characters per tab. But many IDE’s use 4
characters (the usual single indentation width). When editing a source file, depending on the typing and
automatic indentation features, the result is often a mixture of tabs and spaces in the indentations. When such a
file appears correctly in an IDE with 4 spaces per tab, for instance, the same file appears totally messed up in an
editor with 8 spaces per tab.

Most editors and IDE’s have an option to force the usage of multiple spaces instead of a tab.

Automatic clean-up scripts should be used on a regular basis on the code base to convert tab characters into
spaces (but a uniform tab width must be applied and may not match the original environment).

Exception: The presence of an actual tabulation character is required in some specific file formats such as
makefiles. But most editors and IDE’s can handle this exception.

TSDuck Developer’s Guide Version 3.38-3816

82

5.3.2.2. Character encoding

There is always some misunderstanding between the characters in a text and their binary representation in a file.
In the most general case, a character is universally represented by a 32-bit UNICODE value. But files are rarely
represented in UTF-32 format.


In practice, UTF-32 is untransformed UNICODE. Some environments, such as Windows,
erroneously name "UNICODE" a 16-bit representation which is actually UTF-16 with surrogate
characters. UTF-16 means Unicode Transformation Format - 16 bits.

When a file is transferred between systems or accessed from a shared disk by multiple heterogeneous systems,
the physical content of the file remains the same but the various operating systems or production tools often
interpret this physical content in different ways, leading to unpredictable results.

The following rules attempt to mitigate this problem.

[Convention] Restrict the character set of source files to the 7-bit ASCII set.

There are few reasons to use characters outside the 7-bit ASCII set in software source files. The syntax of all
modern programming languages uses ASCII only. All identifiers and comments shall be written in English which is
ASCII only. Any people name in comment (author, developer, etc.) shall be used without accent or local
"decoration".



Avoid "national pride" of non-English characters. Contributors shall accept to drop them from
their name, if any. As an example, the main author of TSDuck is named "Lelégard", with an
accent on the second "e", but the name is simply stored as "Lelegard" (no accent) in all source
files. All contributors are kindly requested to accept this rule.

[Convention] Use UTF-8 encoding when internationalization is required.

It is sometimes required to use international texts. Always uses specific internationalization files for non-English
languages. The actual format of these files depends on the toolset. Unless specified otherwise by a toolset, always
use the UTF-8 encoding for these files. When present, the option "UTF-8 without BOM" should be used.



BOM: Byte Order Mark, a feature of UTF-16 and UTF-32 which is normally useless in UTF-8. A
specific leading binary sequence has been defined as "UTF-8 BOM". It can be used to assert
that the file format is UTF-8. However, several tools are unable to process this sequence
correctly. Therefore, it is recommended to avoid it.

When the syntax of a file format allows the explicit specification of the character encoding, use it to specify UTF-8.

Example: All XML files shall be saved in UTF-8 format and start with:

<?xml version="1.0" encoding="UTF-8"?>

Exception: Some tools may impose or generate files using their specific encoding. Always use the character
encoding which is the safest one for such tools.

5.4. C++ coding guidelines

This section defines the coding guidelines which are specific to the C++ language.

5.4.1. C++ coding rules and recommendations

Version 3.38-3816 TSDuck Developer’s Guide

83

5.4.1.1. Language selection

[Recommendation] Unless it is impossible for a very good reason, do not use C, use C++.

C is an old and unsafe language. C++ is much safer than C. It is possible to improve the safety of C using all
advanced features of ANSI C99 and the most paranoid warning mode of the C compiler, but C will never be as safe
as C++.

Good reasons to use C instead of C++ include:

• Maintenance of a legacy application written in C.

• Embedded system development on a platform without C++ compiler.

All other reasons are usually bad reasons.

If you need at least two essential reasons to use C++ instead of C, one is named constructors and the other one is
named destructors. These features are the essential bases of safe coding and they are not available in C.

For the record, the very first version of the ancestor of TSDuck, back in 2005, so-called "TSDuck V1", was
developed in C. When the code base grew, this quickly appeared to be a fatal mistake. All the code was scrapped
and rewritten in C++, starting "TSDuck V2".

[Rule] Performance is never a good reason for not using C++.

There is a common misconception that C++ code is slower than C code. This is wrong. The confusion comes from
the fact that C++ has much more features than C and seems more complicated. But more features do not mean
more generated code.

Most C++ features are source-level structure and safety. If you are compiler aware, you realize that the generated
code overhead is insignificant. It is quite possible to write good object-oriented C++ code with performance in
mind.

As an example, a good object design involves lots of very small methods. But if you declare them as inline, you get
the performance of C with the features of C++.

5.4.1.2. Modularity

[Rule] For each file module.cpp which is not a main program, there must be exactly one corresponding
module.h which contains the declaration of the public interface of the module. No internal or private
definitions shall be present in the header. No part of the public interface of the module shall be
declared in another header file.

This is the natural C++ implementation of a module. A module must have exactly one public interface and one
implementation. There is one file for each.

Exception: In some cases, there is no need for an implementation and the .cpp file is not present, everything is
present in the header file. This can be the case where the module contains declarations only, or template methods
or classes, or when all functions and methods are short enough to be declared inline.

[Rule] Each module shall contain only one C++ class. If the class has inner classes, the inner classes
are declared and defined in the same module at the top-level class.

This simplifies maintenance.

It is not possible to declare an inner class in a different header file from its enclosing class. To keep the one-to-one
association between .h and .cpp files, the definitions of the inner class methods are implemented into the same
.cpp file as the enclosing class.

 Inner classes (also known as nested classes) shall not be confused with subclasses.

[Rule] If a data type is used only inside a module and is consequently private to the module, it shall

TSDuck Developer’s Guide Version 3.38-3816

84

be declared within the module.cpp file and not in any header file.

If the type is private, it should not be useable by any other module. If the type were declared in a header file, even
a specific one, different from the module.h public interface, it could be included by another module and used
outside its normal scope.

In the case of C++ "private" declarations, the syntax of the language requires to declare them in the class
declaration, meaning in the header file of the class. However, being private, these declarations cannot be used
outside their outer class definition, which preserve the data type hiding rule.



In the early times of the C language, in the "Kernighan & Ritchie" era, it was common to
declare all data types in one header file, outside of the source files. This practice is clearly
outdated and should be banned. This separation of data types and code is purely based on
the syntax, not on the semantics and is a violation of the principle of modularity.

[Rule] A module implementation file module.cpp shall start with an #include directive of its own
interface file module.h.

Thus, the successful compilation of module.cpp validates two important points:

• The header file is self-sufficient.

• The header file is consistent with its implementation.

[Rule] A header file must allow multiple inclusions without generating errors.

You cannot manage how your header will be used. The compilation of a user application which includes your
header file shall never generate an error simply because of your header.

Use case: A user code explicitly includes your header module.h as well as some other header other.h. If this
other.h happens to also include your module.h, there must be no error.

In C++, the #pragma once is defined for this purpose. The old C tradition of conditional compilation using #ifdef
MODULE_H is outdated and should be avoided.

Example: C++ header file module.h:

#pragma once
// ... file content here ...

[Rule] The structure of a header file shall be self-sufficient. The users of the header file must not have
to specify other header files in order to use it. There must be no ordering requirement of the #include
directives for the user.

This means that a header file must include all other header files which are needed by the declarations it contains.

[Rule] The header file for a C module shall be safely compiled when included from a C++ module. A C
module shall be safely linkable with C++ modules.

In a C header file, do not use C++ reserved names.

In a C header file, all language constructs which are specific to C or otherwise incompatible with C++ shall be
conditionally compiled using the predefined macro __cplusplus (with two leading underscores). This macro is
defined by the compiler when the compilation occurs in a C++ environment.

In a C header file, all C declarations which generate a reference to a linker symbol (function or data) shall be
enclosed in extern "C" {…} when compiled in C++.

Example: The following structures are inserted at the beginning and end of the declarations in the C header file:

#if defined (__cplusplus)

Version 3.38-3816 TSDuck Developer’s Guide

85

extern "C" {
#endif

/* all C declarations here ... */

#if defined (__cplusplus)
} /* extern "C" */
#endif

[Rule] Use the anonymous namespace to define elements (data, classes, functions, etc.) which are
internal to a module.

This avoids name clashes and namespace pollution.

This is the C++ equivalent of static declarations in C. Note that static has a different meaning in C++ and should
not be used for that purpose.

Example:

namespace {
 void SomeInternalMethod()
 {
 ...
 }
}

[Rule] Never use static variables in inline functions.

If you do that, there will be one static variable per module where the function is used, breaking the semantic of
the static attribute.

5.4.1.3. Naming and syntax formatting

Most of these topics are covered by coding conventions in section 5.4.2. However, a few topics are clearly rules
rather than conventions because they impact the reliability and good understanding of the code.

[Rule] Always use a namespace when declaring entities. Never define anything in the default
namespace.

This avoids the name clashes during the link. In TSDuck code, everything is defined in the namespace named ts or
in one of its inner namespaces.

[Rule] The directive using namespace is strictly forbidden. There is no exception.

This avoids ambiguities. This also avoids some portability issues, especially with Visual C++ on Windows platforms.

All C++ standard entities must be referenced with the std:: prefix.

Remember that there is no need to explicitly specify the namespace to reference an entity which is declared in the
current namespace or an outer one. Therefore, inside the source code of TSDuck, it is not necessary to repeat the
prefix ts:: everywhere. Only third-party applications need to use it.

[Rule] Explicitly use the :: prefix for predefined entities which are defined in the default namespace.

This indicates an explicit reference to the default namespace and avoids ambiguities with entities which are
declared in the current namespace or an outer one.

Example:

open("file"); // WRONG: may conflict with an open() method of this class

TSDuck Developer’s Guide Version 3.38-3816

86

::open("file"); // OK, there is no ambiguity

[Rule] Do not place code after a comment on the same line.

This is confusing. The trailing code can easily remain unnoticed.

Example:

// comment line is OK
a = 1; // comment after code is OK
b = x /* WRONG: code after comment is confusing */ + 3;

See also next rule.

[Rule] The comments always start with a // and extend up to the end of line. The usage of the C
comment syntax /*…*/ is discouraged.

A common problem with the C syntax /*…*/ is the potential absence of closing */. In some cases, the subsequent
lines of codes are silently "swallowed" by the comment, up to the end of the next comment. Such bugs are very
difficult to track.

By using the // syntax, all comments automatically terminate at the end of line.

Counter-example:

/* innocent comment */
a = 1;
/* WRONG: unterminated comment
b = 2;
/* the preceding comment actually ends here -->*/
c = 3;

In this example, the instruction b = 2; is excluded from the compiled code. Good luck to find the bug!

[Rule] Using the { } braces in conditional and loop statements is mandatory, even if there is only one
or no instruction in the block.

Omitting the braces is dangerous for the maintainability of the code. If the indentation is incorrect or if the unique
statement in the block is complicated or spans multiple lines, omitting the braces makes the code hard to
understand.

Good code:

Bad code:

Even worse:

if (x > a) {
 x = 0;
}

for (i = 0; i < max; i++) {
 print(a[i]);
}

while (readFile()) {
}

if (x > a)
 x = 0;

for (i = 0; i < max; i++)
 print(a[i]);

while (readFile());

if (x > a) x = 0;

Notes and anecdotes:

• Yes, Python is bad. Know your history. Using indentation for structuring code was abandoned in the 70’s after

Version 3.38-3816 TSDuck Developer’s Guide

87

the Fortran era.

• Failing to apply this rule was the root cause of the famous security vulnerability nick-named "gotofail" on
macOS and iOS.

• The Linux kernel coding rules specifically prohibit the usage of braces when there is only one instruction. Do
these guys ever heard of "gotofail"?

5.4.1.4. Coding style

[Rule] Avoid numerical constants, use static constexpr declarations for these values.

This is the C++ way. Preprocessing macros shall not be used for constants in C++. Use preprocessing macros only
for conditional compilation or for numerical values which are evaluated in the context of conditional compilation.

Exception: Usual constants such as 0 and 1 which are used in obvious contexts (reset, increment) shall be used
without names since they are self-explanatory.

[Rule] The value of all preprocessing macros shall be enclosed into parentheses (in the absence of
other syntactic constraints).

This avoids compilation ambiguities.

Example:

#define TS_GOOD (TS_FOO + 3)
#define TS_BAD TS_FOO + 3 // WRONG: what about "a = 5 * TS_BAD" ?

[Rule] In all preprocessing macros, the parameters shall be enclosed into parentheses when
referenced in the definition.

This avoids compilation ambiguities.

Example:

#define TS_GOOD(x) (2 * (x))
#define TS_BAD(x) (2 * x) // WRONG: what about "TS_BAD(a + b)" ?

[Rule] In all preprocessing macros, each parameter shall be referenced exactly once in the definition.

Macro preprocessing is only text substitution. When the actual parameter of a macro has side effects, it is
evaluated as many times as referenced in the macro definition while the caller expects exactly one evaluation.

Example:

#define TS_GOOD(x) (f((x))) // OK: TS_GOOD(a++) => a incremented
#define TS_BAD1(x) (g((x), (x))) // WRONG: TS_BAD1(a++) => a incremented twice
#define TS_BAD2(x) (h()) // WRONG: TS_BAD2(a++) => a not modified

Exception: There are macros which are reserved to specific usages where the actual parameters are not general-
purpose expressions but must be lvalues or special syntactic structures.

Alternative: When it is required to reference a macro parameter several times, you cannot use a macro. You
should implement a real function and declare it inline. See next rule.

[Rule] Preprocessing macros should be avoided for code structures. Use inline function definitions.

This is the C++ way. This avoids all macro substitution pitfalls which are described in the preceding rules.

There is no difference in terms of code size or performance. The generated code for inline functions is expanded

TSDuck Developer’s Guide Version 3.38-3816

88

inline, just like a preprocessing macro. If the inline function is not used, no code is generated.

[Rule] The preprocessing directives #ifdef and #ifndef should not be used. Use #if followed by an
expression instead.

This is more consistent with directives containing multiple conditions or #elif directives. For complex conditions,
the code is more compact and more readable.

Good code:

Bad code:

#if defined(A)
 #define X 1
#elif defined(B) && defined(C)
 #define X 2
#endif

#ifdef A
 #define X 1
#else // not A
 #ifdef B
 #ifdef C
 #define X 2
 #endif // C
 #endif // B
#endif // A

[Rule] Use the preprocessing directive #error wherever there is no valid default alternative.

The #error will draw the attention of the developer when the code is compiled in a new environment which was
not previously addressed. The developer who does the porting can precisely locate where there is some specific
work to do.

Example 1: A simple list of mutually exclusive alternatives, ensuring that one branch is taken.

#if defined(TS_WINDOWS)
 typedef ... SystemError;
#elif defined(TS_UNIX)
 typedef ... SystemError;
#else
 #error "unknow O/S, please update SystemError in this header file"
#endif

Example 2: A more complex list of alternatives. But exactly one symbol must be declared at the end.

#if (defined(__i386) || defined(__x86_64)) && !defined(TS_LITTLE_ENDIAN)
 #define TS_LITTLE_ENDIAN 1
#elif (defined(__sparc) || defined(__powerpc)) && !defined(TS_BIG_ENDIAN)
 #define TS_BIG_ENDIAN 1
#endif

// ... more definitions

#if !defined(TS_LITTLE_ENDIAN) && !defined(TS_BIG_ENDIAN)
 #error "unknow endian, please update this header file"
#endif

#if defined(TS_LITTLE_ENDIAN) && defined(TS_BIG_ENDIAN)
 #error "conflicting endianness, please review this header file"
#endif

[Rule] When declaring multiple variables with the same base type, create multiple individual
declarations, one per line.

Version 3.38-3816 TSDuck Developer’s Guide

89

The following two code excerpts are perfectly valid according to the C and C++ standards and have identical
effects. However, in the bad code example, it is not clear that the line declares objects which are not int (the last
two variables are a pointer and an array). It is also not clear that j is pre-initialized to zero while i is not.

Good code:

Bad code:

int i;
int j = 0;
int* p;
int a[10];

int i, j = 0, *p, a[10];

[Rule] The order of evaluation of the operators in C and C++ is complex. Do not hesitate to add extra
parentheses in order to make the code more readable.

Do you know what ++p->a means? Does it increment the pointer first and then dereference it? Or does it
dereference the pointer first and then increment the pointed field? Actually, the second alternative is right. But
how many maintainers will know that?

By the way, did you even know that the self-increment operator ++ has distinct precedencies when it is used as a
prefix or a suffix?

Example: Adding theoretically useless but helpful parentheses:

++p->a; // WRONG: nobody really knows what this mean
++(p->a); // GOOD: same as "++p->a" but more readable
(++p)->a; // not the same as "++p->a" so parentheses are required anyway

[Rule] A switch statement must not contain any implicit "fall through" path, i.e. all cases must end
with a break.

The switch/case implicit fall-through path is a rare and confusing construct. Most of the time, no break at the end
of a case is a forgotten one, i.e. a bug. By allowing implicit fall-through paths, we cannot clearly identify if a
missing break is a bug or a feature. So, to be safe, we forbid it.

Exception: It is allowed to have no break when there is no instruction at all after the case. This situation is not a
real fall-through, this is a case with multiple equivalent values.

Example:

switch (x) {
 case 1:
 print("something ");
 // WRONG: implicit fall-through path is confusing, bug or feature ?
 case 2:
 print("else");
 break;
 case 3: // OK, not a real fall-through but a multiple case entry
 case 4:
 print("ok");
 break;
 default:
 print("error");
 break;
}

In TSDuck, when allowed as a compiler option, the implicit fallthrough paths are detected and rejected using the

TSDuck Developer’s Guide Version 3.38-3816

90

appropriate warning configuration.

[Rule] In a switch statement, if a "fall through" path is really necessary, it must be explicitly declared
using a [[fallthrough]] attribute.

These constructs shall remain rare and reserved to cases where any other structure would be even more
confusing.

Example:

switch (x) {
 case 1:
 print("something ");
 [[fallthrough]];
 case 2:
 print("else");
 break;
 default:
 print("error");
 break;
}

[Rule] A switch statement must end with a default entry.

This ensures that unexpected values are always processed, typically with an error processing.

This is especially useful when the switch is applied on all values of an enum type. You may think that the default
alternative is useless since all values are handled. However, what will happen when you update the enum type and
add a value? If several switch statements are used in various modules, you will probably forget to update the list
of cases in one of them. Without default alternative, the new value will be silently ignored and the bug will be
either hard to find or (worse) remain undetected. In the presence of a default alternative which triggers error
code, the run-time error will immediately detect the bug.

In TSDuck, when allowed as a compiler option, the absence of default alternative is detected and rejected using
the appropriate warning configuration.

[Rule] If a local variable is required in a case or default entry in a switch, declare a local block using {
} for the entry.

Do not declare a local variable in a switch case without enclosing { } block. The scope of the local variable extends
to the subsequent entries in the switch, which is usually not what you indented.

Note that the C and C++ languages have distinct interpretations here.

Good code:

Bad code:

Version 3.38-3816 TSDuck Developer’s Guide

91

switch (x) {
 case 1: { // <== note the "{"
 int i; // local to this entry
 ...
 break;
 } // <== note the "}"
 case 2:
 ...
 break;
 default:
 ...
 break;
}

switch (x) {
 case 1:
 int i; // C: compilation error
 ...
 break;
 case 2:
 // C++: i is still visible here
 ...
 break;
 default:
 ...
 break;
}

[Rule] In conditional expressions, explicitly compare against zero for non-boolean values such as
integers or pointers.

The implicit interpretation of an integer or pointer value as a boolean is confusing. Sometimes, the "common
interpretation" is even the opposite of the reality.

Example: The common sense is that a function which returns a boolean value would return true on success and
false on error because the word "true" reveals a positive feeling while "false" reveals a negative one. Many UNIX
system calls do not return a boolean value. They return an integer which is zero on success and a non-zero error
code on error.

See how this can be confusing.

Confusing code:

Cleaner code:

if (close(fd)) {
 // You think it's a success ?
 // In fact, it's an error
}

if (close(fd) != 0) {
 // error processing
}

[Rule] Never use boolean operators (!, &&, ||) on non-boolean values such as integers or pointers.

Same reasons as the preceding rule.

[Rule] Do not use assignments in conditional expressions, even for boolean variables.

This is confusing. The lazy reader will misinterpret if (a = b) as if (a == b). So, assign first, then use the
resulting variable in the conditional expression:

Confusing code:

Cleaner code:

if (big = isLargeFile(f)) {

}

big = isLargeFile(f);
if (big) {

}

In TSDuck, when allowed as a compiler option, an assignment in a boolean expression is detected and rejected
using the appropriate warning configuration.

Anecdote: A long time ago, someone attempted to introduce a backdoor in the Linux kernel, pushing code
containing something like if (proc->uid = 0) {…}. The careless reader could thing that the kernel code tested if

TSDuck Developer’s Guide Version 3.38-3816

92

the caller was root. If practice, the code forced to the caller to become root, which was a severe security breach. If
you need only one reason for this coding rule, use this anecdote.

[Rule] Reduce the scope of variables to the smallest possible block.

This is more readable and easier to maintain.

Example: Loop indexes should be declared inside the for statement when possible:

Good code:

Bad code:

for (int i = 0; i < max; i++) {
 const int j = 3 * i;
 ...
}

int i, j;
...
for (i = 0; i < max; i++) {
 j = 3 * i;
 ...
}

[Rule] Delay the declaration of variables until they are used for the first time.

This avoids lengthy initial declarations which are not immediately useful. This also gives you a chance to declare
the variable as const for instance.

Good code:

Bad code:

int a;
...
a = ...;
...
const int max = 2 * a + 1;
for (int i = 0; i < max; i++) {
 ...
}

int a, i, max;
...
a = ...;
...
max = 2 * a + 1;
for (i = 0; i < max; i++) {
 ...
}

[Rule] To set the initial value of an object, always prefer the initialization syntax over an assignment.

This is faster to execute. In the case of the initialization by assignment, the default constructor is first invoked,
then the assignment operator is invoked.

Example: Objects b, c and d have an identical initial value. But the initialization of b is faster.

ts::Foo a;
ts::Foo b(a); // Invoke the copy constructor
ts::Foo c = a; // Invoke the default constructor, then the assignment operator
ts::Foo d; // Invoke the default constructor
d = a; // Invoke the assignment operator

In the case of objects c and d, the default constructor does something which is immediately undone by the
assignment operator.

Sometimes, the compiler may optimize this but do not count on it since a deep code analysis of the constructor
and assignment is required to allow this optimization. Without this deep source code analysis, the compiler does
not know if the semantics and side effects of the default constructor plus assignment are equivalent to the copy
constructor.

[Rule] The use of goto is prohibited.

Version 3.38-3816 TSDuck Developer’s Guide

93

The goto statement is the most discussed and infamous construct in computer software history.

Possible exception: The only acceptable exception is a common error path within one function, at the end of the
function, after the return of the normal (non-error) path.

However, this should be reserved to special cases, when working on low-level system calls, in the presence of
multiple potential error cases, when using another more complex structure would be even more confusing. In
modern C++ code, using structured objects with a proper destructor should prevent this.

Example: Valid and (possibly) acceptable usage:

class Foo
{
public:
 Foo(); // default constructor
private:
 FILE* f1 = nullptr;
 FILE* f2 = nullptr;
};

Foo::Foo()
{
 // Open each resource
 f1 = fopen("file1", "r");
 if (f1 == nullptr) {
 goto error;
 }
 f2 = fopen("file2", "r");
 if (f2 == nullptr) {
 goto error;
 }

 // Do other initial processing
 // ...
 return;

 error:
 if (f1 != nullptr) {
 fclose(f1);
 f1 = nullptr;
 }
 if (f2 != nullptr) {
 fclose(f2);
 f2 = nullptr;
 }
}

[Rule] A single function shall not exceed 50 lines of actual code or approximately 100 raw lines
including comments.

Very long functions are hard to understand and maintain. They should be redesigned to extract local treatments
in other well documented local functions, even if these local functions are called only once.

Exception: A very large switch construct with a lot of short entries may be acceptable. In fact, breaking it apart
into several functions may be less maintainable.

[Rule] Do not pass parameters of non-elementary type by value.

Passing a parameter by value is legal but it requires copying the parameter value, typically on stack. While this is
harmless for elementary types (integers, floats, enums and pointers), it can be costly for structured types.

TSDuck Developer’s Guide Version 3.38-3816

94

In C++, this can even be devastating with polymorphic types (classes with at least one virtual function) when the
type of the formal parameter is a superclass of the actual parameter. In this case, we get the slicing problem: the
pointer to the vtable and the superclass parts are copied while the derived parts are not. The result is an
inconsistent object with virtual methods possibly using fields that do not exist. In C++, the common way is to pass
such parameters by reference (a C++ specific mechanism, not to be confused with passing by address or by pointer
in C).

Example:

class Foo {...};

void f(int x); // OK: elementary type by value ("in" parameter)
void f(int* x); // OK: elementary type by address ("out" parameter)
void f(Foo x); // WRONG: structured type by value, don't do that
void f(const Foo* x); // OK: structured type by address ("in" parameter)
void f(Foo* x); // OK: structured type by address ("out" parameter)
void f(const Foo& x); // OK: structured type by reference (C++)

[Recommendation] In for loops, prefer the modern C++11 syntax instead of explicit iterators.

The code is more readable, mode compact, and less error-prone.

Example:

std::list<Foo> flist;

// Using iterators
for (std::list<Foo>::iterator iter = flist.begin(); iter != flist.end(); ++iter) {
 process(*iter);
}

// Modern C++11 syntax
for (auto Foo& f : flist) {
 process(f);
}

Exception: There are cases where the iterator is required for intermediate operations of specific processing at the
end of each iteration. This is the case when it is necessary to insert or remove elements in the list in an iteration.

[Rule] In modern C++11 for loops, use a reference in the iteration parameter.

This saves the useless copy of a temporary object.

Example:

std::list<Foo> flist;

// INCORRECT code
for (auto Foo f : flist) {
 // In each iteration, f is a new temporary object which is constructed
 // from the value of the element in the list
 process(f);
}

// correct code
for (auto Foo& f : flist) {
 // f is a reference to the element in the list
 process(f);

Version 3.38-3816 TSDuck Developer’s Guide

95

}

5.4.1.5. Strict typing

To detect as many potential errors as possible directly at compilation time, use strict types and attributes on all
declarations and definitions.

[Rule] Use the const attribute wherever an entity is used as read-only.

This applies to parameter declarations in function profiles and in object declarations.

Example 1: A value is computed once and reused later without modification.

const size_t max = count * sizeof(something) + offsetFoo;
size_t i;
for (i = 0; i < max; i++) {

Example 2: If a reference or pointer value is used to access a read-only area (at least through this pointer or
reference), use the const attribute. This is especially important for function declarations since this establishes a
more precise contract with the caller.

void LogMessage(const char* msg, const Time& time);

[Rule] Use the volatile attribute wherever an entity is potentially asynchronously updated by another
thread or some hardware mechanism.

This guarantees that the generated code will not optimize the access to the variable by caching it in a register for
instance.

[Rule] Do not use volatile on a non-elementary types (i.e. not integer and not boolean).

The compiler can hardly guarantee an atomic access on such types and there is a risk to get randomly corrupted
values.

Redesign the code so that accesses to non-elementary types are explicitly synchronized.

[Rule] Be careful when using the const attribute on pointers. Do you want a variable pointer to
constant data, a constant pointer to variable data, or a constant pointer to constant data? A good
practice is to use type names for complex pointer types.

The order of the const attribute, the type name and the * sign makes the difference. This is often the source of
obscure compilation error messages.

Example:

const char* a; // a variable pointer to "const char"
char* const b = ...; // a constant pointer to "char"
const char* const c = ...; // a constant pointer to "const char"

a = "abcd"; // OK
*a = 'x'; // ERROR
b = "abcd"; // ERROR
*b = 'x'; // OK
c = "abcd"; // ERROR
*c = 'x'; // ERROR

It is more readable to use type declarations:

TSDuck Developer’s Guide Version 3.38-3816

96

using CharPointer = char*;
using ConstCharPointer = const char*;

ConstCharPointer a = nullptr;
const CharPointer b = ...;
const ConstCharPointer c = ...;

[Rule] Never use built-in integer types such as int or long, unless explicitly required by the context.

The C and C++ standards do not define the implementation of the int, short, long types and their variants
(unsigned, long long, etc.).

Specifically, the types int and long are known to have different sizes on different platforms. Using them reduces
the portability of the code by introducing subtle side effects on large values.

Of course, in the presence of a legacy library which uses int or some of its variants in an API, you are obliged to
use the same type for the data which are used with this API.

Use the following standard types when the size of integer values matter. They are defined in the standard headers
stdint.h and inttypes.h.

int8_t uint8_t

int16_t uint16_t

int32_t uint32_t

int64_t uint64_t

[Rule] Use the predefined type size_t for values which hold the size in bytes of a C/C++ object.

This is the standard definition in the C/C++ language. The C and C++ standards define size_t as the return type for
the sizeof operator. The modern C/C++ standard libraries use this type in the profile of their functions for size
values.

The actual implementation of size_t differs from one platform to another. It has typically the same size as a
pointer. But there is no unique correspondence with the built-in integer types.

For instance, some 64-bit platforms define int as 32-bit and long as 64-bit while other 64-bit platforms define both
int and long as 64-bit. But in all cases, size_t is 64-bit on these platforms. This is especially true when porting
between Windows / Visual Studio and Linux / GCC.

So, there are clearly at least three distinct sets of integer semantics:

• Built-in types (int et al.): not portable, no specific semantic, unpredictable, do not use.

• Size of objects (size_t).

• Values represented by a given number of bits (uint8_t et al.)

Variant: The standard type ssize_t declares a signed integer type of the same size of size_t.

[Rule] Never use the built-in type char for any other purpose that 7-bit ASCII characters.

Do not use char to represent array of bytes, use either int8_t or uint8_t. Do not use char to represent characters
outside the 7-bit ASCII range. In the context of internationalization, the binary representations vary. This can be a
dedicated 8-bit character set (Latin-1, Latin-9, etc.) or some binary representation of UNICODE (UTF-8, UTF-16,
UTF-32, etc.)

In all cases, the management of internationalized character strings shall be encapsulated into some dedicated
library.

In TSDuck source code, the types ts::UChar and ts::UString implement Java-like characters and strings (UTF-16
with surrogate pairs).

Version 3.38-3816 TSDuck Developer’s Guide

97

[Rule] Never use the built-in type unsigned char, nowhere, never.

The type unsigned char represents nothing. It has no semantics at all.

Either a data is an ASCII character and it is a char or it is a byte and it is an int8_t or uint8_t.

[Rule] Always use literal constants which are type-compatible with the context.

Example:

int i = 17;
long l = 17L; // 'L' suffix means a literal of type long
char c = '\0'; // do not use integer literal such as: char c = 0;
void* p = nullptr; // C++ notation for a null pointer, not always binary zero

It is important to understand why using the L suffix is essential in integer literals which are used in the context of
an expression the final type of which is long. Consider the following example.

const int i = 1;
const long l1 = i + 0xFFFFFFFFL;
const long l2 = i + 0xFFFFFFFF; // same literal without 'L' suffix

You may think that l1 and l2 have the same value. This may be the case. But they don’t on some platforms where
l1 gets 4294967296 (the expected value) while l2 gets zero.

Why?

On some platforms, int is a 32-bit value while long is a 64-bit value. In the case of l2, the intermediate context into
which the literal is evaluated is int since i is an int. So, the literal 0xFFFFFFFF is first evaluated into the context of
an int and its value is -1. The addition is performed on int values, giving zero. Finally, the result is promoted to
long, staying zero.

On the contrary, in the case of l1, the literal is explicitly of type long because of the trailing L suffix. Thus, the
intermediate context into which the addition is performed is long. This time, i is first promoted to long and then
the addition is performed on long values, giving the expected result.

Portability issue: The L suffix is the standard way to represent long literals. But we discourage the usage of
predefined integer types (see the corresponding rule above) for portability reasons. For integer types which are
explicitly smaller than 64 bits (int8_t, int16_t, int32_t, etc.), using int literals is usually safe. For explicit 64-bit
integer types (int64_t, uint64_t), it is recommended to use the suffix LL in literals. The corresponding value is of
type long long. The size of this type is not guaranteed either but it is at least 64 bits on all known
implementations.

[Rule] Use the keyword nullptr for null pointers, not the literal 0, not the macro NULL.

This is the only non-ambiguous way of specifying a null pointer.

The old macro NULL was specified for the C language, not C++. Early specifications of the C++ language
commanded to use the literal 0 for null pointers. This has led to many ambiguous or incorrect code since this
literal has two distinct semantics: integer zero of type int and null pointer to any type.

In TSDuck, when allowed as a compiler option, using zero as null pointer literal is detected and rejected using the
appropriate warning configuration (e.g. option -Wzero-as-null-pointer-constant with GCC and Clang).

[Rule] Never change the order of enum values in a type declaration.

The enum types are strictly defined in the C and C++ standards. Specifically, in the absence of explicit numerical
value, enum values are defined as implicitly consecutive numerical values. It is safe for C/C++ code to compare enum
values using < or > operators.

If you change the order of the declarations in an enum type for simple aesthetic reasons (sort in alphabetical order

TSDuck Developer’s Guide Version 3.38-3816

98

for instance), you change the semantics of the type and you potentially break the user’s code. This is why re-
ordering the values of an enum type should be avoided.

If you add a new value in an enum type, think about why you add it:

• If this is simply a new value, add it at the end of the type, regardless of aesthetic reasons.

• You may insert it somewhere else only if there is a very good reason to insert it between two existing values,
for instance because this is new logic state between two previously consecutive states in a strictly ordered
state machine.

[Rule] Always use a type definition (using) for each meaningful type. Do not use basic types which
somehow reflect the implementation of the type.

Example:

using FooIndex = uint16_t;

This facilitates the maintenance if the implementation changes someday.

In the above example, if a 16-bit integer becomes too short some day for a Foo index, just change the type
definition. Otherwise, you would have to change all references to uint16_t as uint32_t in all variables which have
the semantics of a Foo index and only those uint16_t. Needless to say that the probability to introduce a bug at
this stage is very high.

[Rule] In type definitions, use the C++ syntax using name = definition. Do not use the old C typedef
syntax.

The using syntax is more clear than typedef. The type name is clearly isolated before the = sign.

With typedef, in some complex cases such as function pointers, the type name is buried into the type definition
and not easy to spot.

5.4.1.6. Assertions

Assertions are statements which are inserted in the middle of executable code. They assert a condition and abort
the execution if this condition is false. Assertions are included in the generated code under some specific
compilation options and removed by the compiler for the final production code.

Assertions are very useful to check the consistency of the code.

[Rule] Assertion must be used to check the internal consistency of code. Assertions must never be
used to check input values or other external conditions.

Assertions are debug tools exclusively. Removing them shall not change the semantics of the code.

An assertion shall be used only to check the internal consistency of the code. This means that an assertion shall be
used to assert something that you know is always true, regardless of the external environment, if your code is
right.

In other words, an assertion contains a condition which is always true if your code is bug-free, even in the
presence of incorrect inputs or incorrect environment.

For instance, if your code is such that an index i shall always be less than some maximum value at the end of a
loop, you may write assert(i < max).

Similarly, if you are about to write a data structure ds into a memory area ma which is defined as an array of
uint8_t, you may write assert(sizeof(ds) <= sizeof(ma)) and then memcpy(&ma, &ds, sizeof(ds)).

But, under no circumstances, you should use some external condition such as an input parameter of the current
function in an assertion. The semantic of an assertion is that it shall have no effect on correct code. The compiler
may include or remove the assertion from the generated code and the execution of correct code should be exactly

Version 3.38-3816 TSDuck Developer’s Guide

99

the same in both cases.

Checking an external or input parameter in an assertion is illegal since an invalid external condition is not a
symptom of incorrect code (at least your code). If you use an input parameter in an assertion in correct code, this
code will either run or fail in the presence of invalid input, depending on the compilation option.

The correct way of checking inputs is to use plain checking code, not assertions. In the presence of invalid inputs,
write the appropriate error management path for the context (return an error code, log an error, perform a
default action or whatever is required by the context).

Example:

int8_t buf1[(3 * TS_SIZE1) + 4];
int8_t buf2[TS_SIZE1 + TS_SIZE2];

// correct, sizes are compile-time constants
assert(sizeof(buf1) >= sizeof(buf2));
memcpy(&buf1, &buf2, sizeof(buf2));

int8_t* buf3 = (int8_t*)(malloc(someComputedSize));

// incorrect, depends on system run-time resources
assert(buf3 != nullptr);

// correct, valid run-time check regardless of compilation options
if (buf3 == nullptr) {
 // do some error processing
}

// incorrect, depends on a run-time value
assert(sizeof(buf1) >= someComputedSize);

// correct, valid run-time check regardless of compilation options
if (sizeof(buf1) < someComputedSize) {
 // do some error processing
}
memcpy(&buf1, buf3, someComputedSize);

[Rule] Assert everything that could be asserted.

Use assertions as often as necessary. When writing code, always try to locate all the implicit assumptions you
make (data size, enum values ordering, etc.). Locate all the conditions that must be true and which would corrupt
something if incorrect (final index values, counters, etc.) Assert all of this.

When writing code, you easily assume conditions. You know that they are true by design. But you may be wrong
(nobody is perfect). And some future maintenance may break the design. So, even if this seems futile, write
assertions on critical conditions.

And remember that assertions are automatically removed by the compiler in production code. So, do not hesitate
to use assertions, they are performance-free on production code.

[Rule] The debug code which is conditionally compiled (typically using some preprocessor symbol such
as DEBUG) shall not modify the functional behavior of the code.

The reasons are the same as for the previous rule.

Such debug can typically only log debug information.

Be aware, however, that the presence of debug code may have a significant impact on timing.

TSDuck Developer’s Guide Version 3.38-3816

100

5.4.1.7. Secure coding

[Rule] Always initialize data with predictable values. Use zero for integers and nullptr for pointers if
there is no other meaningful values in the context.

Uninitialized variables are a common source of bugs which may be difficult to track.

Getting different behaviors on different platforms or versions depending on different unmanaged initial values is
even worse.

Example:

uint32_t x = a + b;
uint32_t y = 0;
uint32_t* p = nullptr;

[Rule] Do not use memset() to initialize structures. Use appropriate initial value for each type.

All binary zero is often not appropriate as initial value for a data structure.

Good code:

Bad code:

struct Foo {
 uint8_t* p;
 size_t size;
};

Foo obj;
obj.p = nullptr; // not always binary zero
obj.size = 0;

struct Foo {
 uint8_t* p;
 size_t size;
};

Foo obj;
memset(&obj, 0x00, sizeof(obj));

[Rule] Make no assumption about the size or memory layout of a data structure.

Each platform has its constraints on data alignment. The compiler takes them into account when representing a
data structure. The same data structure may have different sizes or memory layout on different platforms.

Example:

struct Foo {
 uint8_t a;
 uint32_t b;
} Foo;

The size of this structure may be 5 or 8 bytes, depending on the platform. The field b may be at offset 1 or 4 from
the beginning of the structure.

If your code depends on the fact that b is assumed to be at a specific offset, you should assert this. The following
example asserts that b is at offset 1 after a:

assert(((char*)&((Foo*)nullptr)->b - (char*)&((Foo*)nullptr)->a) == 1);

This is quite a strange expression since the null pointer is explicitly dereferenced. But it is used only to evaluate an
address and not a content. Thus, the pointer is never really dereferenced.

For the sake of clarity, the above code can be rewritten as:

Version 3.38-3816 TSDuck Developer’s Guide

101

assert(offsetof(Foo, b) == 1);

[Rule] Make no assumptions about the evaluation order of operands or function parameters.

The C and C++ languages do not specify the order of evaluation in expressions and function calls. If any operand
or parameter has side effects, the final result is unpredictable and may vary from one platform to another.

Counter-example: Bad code which rely on the order of evaluation:

int a = 2;
int b = a * a++; // WRONG: result can be either 4 or 6
f(print(a), print(b)); // WRONG: a and b may be printed in any order

[Rule] Do not assume that a null pointer (nullptr in C++) is represented by binary zeroes.

The C and C++ standards state that a zero value in a pointer context is interpreted as a null pointer. But, on some
platforms where zero is a valid address, the compiler may use a non-zero bit pattern to represent the concept of a
null pointer.

This rarity makes the problem even more dangerous. If your code relies on the fact that a null pointer is
represented by a zero bit pattern, it will work on most platforms. Later, when recompiling the code on a new
platform where null pointers are represented differently, the code will no longer work. And it will take ages to find
the problem.

[Rule] In a function, never return a pointer or a reference to a local variable or a parameter of this
function.

The local variables go out of scope upon return. The returned pointer or reference points to a portion of the stack
which is no longer used. Worse, the referenced memory area will be reused by the local variables of another
function call.

Consequently, returning pointer or a reference to a local variable or a parameter may lead to subtle random
memory corruptions in the later functions. This kind of problem is a nightmare to debug.

[Rule] As a generalization of the preceding rule, always consider the lifetime of an object before
passing it using a pointer or a reference to some other entity.

The preceding rule addresses this problem for statically allocated objects in the context of a mono-thread
application. But similar problems exist with dynamically allocated objects and multi-threaded applications.

Object lifetime: First, what is the lifetime of an object? This depends on the nature of the object. If the object is
directly declared in a function or code block, its birth is its declaration point and its death occurs when the
execution flow exits from the function or block. If the object is dynamically allocated (malloc() or equivalent in C,
new in C++), the allocation is its birth and the corresponding deallocation (free() or equivalent in C, delete in C++)
is its death.

Dynamic allocation: When a function dynamically allocates an object and returns this pointer or passes it to
multiple modules, the function loses all tracks of the usage of the pointer by other entities. When shall this object
be deallocated is a complex question which must be addressed at the application design level.


C++ may mitigate this problem using implementations of the smart pointer design pattern,
typically std::shared_ptr in moderm C++.

Multi-threaded applications: If a function passes the address of one of its local variables to another thread,
there is a risk that the function returns while the other thread still uses the referenced data. To protect from this,
the function may synchronize its return point with the termination of the other thread (join operation). Otherwise,
this problem must be addressed at the application design level.

TSDuck Developer’s Guide Version 3.38-3816

102

[Rule] When you declare a function accepting some form of array or raw data buffer, always add a
parameter to specify the size of the data (input) or maximum size of the buffer (output).

Never assume that the format of the data will reliably define the end of the data.

Example:

// WRONG: how much data should I send?
void SendData1(const void* data);

// OK
void SendData2(const void* data, size_t dataSize);

Of course, in the second case, the correct declaration does not mean that the implementation is correct. But it is
possible to write a correct implementation for this function.

On the other hand, the first function can never be safe and reliable.

[Rule] Never call any function with the following characteristics:
- A parameter is an address where the function is supposed to write to.
- The function may write more than one element at that address.
- No parameter gives the maximum number of elements to write to.

Many functions write data to a user-supplied buffer without letting the user specify the size of this buffer. These
functions are simply badly defined and badly designed. They must be thrown away, simply.

[Rule] As a corollary of the preceding rule, never use any unsafe predefined string functions such as
sprintf(), strcpy(), strcat(), all other strXXX() functions of the standard libc and many other
standard functions.

Many standard functions are inherited from the old days of the UNIX operating system in the 70’s. They are
obviously flawed in their definition. Just think twice about using standard functions, especially old ones.

Note that safe alternative versions exist for most of these functions: snprintf(), strncpy(), etc. Although safer
than their ancestors, these functions still require some care. The pain with C-strings is the final null termination
character. When a safe standard C-string function (one with an n in the middle of the name) copies a string into a
buffer and the string is potentially larger than the buffer, the final string is truncated to the size of the buffer. In
this case, truncation means no final null character. This also means that the result is not a valid C-string. If you use
it as a C-string, the results are unpredictable (collecting memory garbage or crash).

Thus, when using the safe n C-string functions, you must always either check the return value to detect overflow
(if supported by the function) or systematically overwrite the last byte of the buffer with a null character.

Example: The function, here strncpy(), does not indicate if a truncation occurred:

char s[10];
strncpy(s, longText, sizeof(s));
s[sizeof(s) - 1] = '\0'; // force valid C-string if truncated

Example: The function, here snprintf(), returns a value which can be used to detect the truncation:

if (snprintf(s, sizeof(s), "%s", longText) >= int(sizeof(s))) {
 // result was truncated,
 // either process error or force valid C-string as above
}

[Rule] Zero out pointers after free (C) or delete (C++).

Version 3.38-3816 TSDuck Developer’s Guide

103

By zeroing the pointer, any accidental usage will result into an access violation (immediate crash) instead of a
reuse-after-free or double-deallocation (subtle memory corruption which may run undetected for sometimes and
hard to debug).

Example:

Foo* p = new Foo(...);
...
if (...) {
 delete p;
 p = nullptr;
}
*p = ...; // immediate crash if preceding branch was taken

[Rule] Never cast a pointer into an integer.

First, converting between integers and pointers is bad design. Second, you do not know the size of a pointer and,
on some platforms, casting a pointer to an integer results in a loss of information.

If you need to declare a field which stores a generic pointer, use void*.

If you need to perform low-level address arithmetic on bytes (instead of C elements), cast the pointers into
uint8_t*.

[Rule] Be careful when mixing the sizeof operator with pointer or array index arithmetic. Remember
that the pointer arithmetic uses the element size as a base while the sizeof operator returns a value
in bytes.

Do not use sizeof to compute the last index in an array; this works only for arrays of char and 8-bit integers.

Counter-example: Incorrectly setting the last element of an array, leading to a crash (at best) or some random
memory corruption (at worst).

uint32_t a[100];

// WRONG: not the last element but far, far away in memory
a[sizeof(a) - 1] = 0;

[Rule] To determine the number of elements in an array, do not use the explicit size from the
declaration of this array. Use sizeof in an appropriate formula.

Otherwise, the maintenance becomes difficult if the declaration of the array is modified.

Example:

Foo array[SOME_COUNT];

// WRONG: what if the declaration of array is modified ?
const size_t numberOfElements = SOME_COUNT;

// This method is independent from the declaration of the array
const size_t numberOfElements = sizeof(array) / sizeof(array[0]);

[Rule] Do not declare arrays as local variables.

This is a corollary of the rules on buffer overflow and stack overflow.

An array can be very large and may overflow the stack of the current thread.

TSDuck Developer’s Guide Version 3.38-3816

104

Moreover, using an array is subject to buffer overflow, even if you make your best efforts to avoid that. On a
security standpoint, a buffer overflow is much more dangerous on the stack than on the heap. The stack is full of
"code addresses", typically return addresses or exception handlers. A buffer overflow on the stack is the typical
vulnerability which can be exploited for malware code injection. Even if there are some "code addresses" in the
heap, they are less common. This is why a buffer overflow is less dangerous on the heap than on the stack.

This problem is more frequent in C than C++. With C++, we do not use arrays; we use vectors or other container
classes. In instance of such a class is typically implemented as a short data structure containing pointers. The
actual data are contained in dynamically allocated areas which are transparently managed by the container class.

[Rule] Never mix signed and unsigned integers.

Mixing signed and unsigned integers, typically dealing with index or offset values, is extremely dangerous and
should be banned. The weird effect appears when offset values are decremented towards zero. After zero, the
signed value goes negative while the unsigned one wraps up to 2n-1. The two values are subsequently
desynchronized.

Some coding guidelines advocate the usage of unsigned integers to manipulate sizes "because they never
become negative". This is not always a good idea. An unsigned value never becomes negative for sure, but it
becomes "extremely large" instead, which is not better or even worse in some case. It is true that the C/C++
standards use the type size_t for sizes and size_t is unsigned. But standards may have bad ideas too.

Counter-example: The following code is a very common way to explore a buffer backward.

i = size;
while (--i >= 0) {
 // do something on buffer[i]
}

The code is valid when the iterator i is signed. However, if i is unsigned, of type size_t for instance, this code
loops forever (or most certainly crashes if i is used to access memory).

Do you understand why Java, a language "designed with security in mind", has no unsigned type?

[Rule] Anticipate and prevent integer arithmetical overflow and underflow.

In C/C++, the integer types always implement modular arithmetic. All operations are performed modulo 2n.
Arithmetical operations never overflow, they wrap up or down. In some cases, this behaviour is fine. But in most
cases it is not. In fact, integer arithmetic and modular arithmetic are two different domains with distinct usages
but C/C++ implements only one of the two. Other programming languages have a different approach. The Ada
language, for instance, defines two distinct families of integer types: integer types and modular types. All
operations on integer types remain in the range of the type and throw an exception in case of underflow or
overflow. Modular types, on the other hand, implement the same semantics as C/C++. Based on the application
requirements, the developer chooses the appropriate type. But this is not possible in C/C++ or Java. The developer
has to implement all checks manually.

The type of check depends on the operation (addition, subtraction, multiplication) and the signedness of the
integer type. Note that an integer division never overflows or underflows but the divider shall be checked to
prevent "divide by zero" errors. To check overflows on addition and subtraction, we need to know the maximum
and minimum values of the integer type. To check overflows on multiplication with signed types, we need to know
the proper function to compute an absolute value.

In C++, the standard header <limits> declares the template class std::numeric_limits. This class provides a
generic mechanism to determine various properties of numeric types, either integer or floating point. The header
<cstdlib> declares overloaded versions of std::abs() for all predefined signed integer types.

The characteristics of an application-defined integer type Foo are:

• Minimum value: std::numeric_limits<Foo>::min()

Version 3.38-3816 TSDuck Developer’s Guide

105

• Maximum value: std::numeric_limits<Foo>::max()

• True when the type is signed: std::numeric_limits<Foo>::is_signed

• Absolute value: std::abs(value)

For some reason, in the template class std::numeric_limits, min() and max() have the syntax of a function while
is_signed has the syntax of a constant. But the functions are inlined and return a constant. So, there is no
performance penalty.

Detecting underflow on subtraction with unsigned integers

The following code illustrates a very dangerous situation of underflow.

size_t start = ...; // some starting index inside an array
size_t current = ...; // current exploration index
size_t size = current - start; // size the explored area

When current is less that start, the operation current - start underflows since size_t is an unsigned type. The
variable size receives a very large positive value, close to 232 or 264, depending on the platform. When size is later
used as an actual data size, the most likely result is a buffer overflow, the best known security vulnerability,
leading to all sorts of malware infections.

So, the code should be rewritten as follow:

size = current < start ? 0 : current - start;

The test current < start anticipates and detects the possible underflow in the subsequent subtraction. In case of
detected overflow, the code uses an appropriate alternative (here a zero value).

Detecting overflow on addition with unsigned integers

Detecting overflows is a bit more complicated than underflows because the wrapping value, where the overflow
occurs, depends on the size of the integer types. The following code illustrates how to detect a potential overflow:

size_t start = ...; // some starting index inside an array
size_t size = ...; // size of an area inside the array
size_t next; // will receive the index after the area

if (start > std::numeric_limits<size_t>::max() - size) {
 // process arithmetic overflow
}
else {
 next = start + size;
 if (next >= size_of_array) {
 // process buffer overflow
 }
 else {
 // now you can safely process the array at index "next".
 }
}

This is the minimum required code to safely move forward into a buffer using index values. Note the different
cases for buffer overflow and arithmetic overflow on index computation.

Checking the potential overflow must be done using operations which never overflow or underflow. The operation
std::numeric_limits<size_t>::max() - size is safe because the integer type is unsigned and
std::numeric_limits<size_t>::max() is its maximum value.

TSDuck Developer’s Guide Version 3.38-3816

106

On the other hand, the naive test if (start + size > std::numeric_limits<size_t>::max()) is both wrong and
useless. It is wrong because the addition may overflow and its value is not reliable. And it is useless because the
test is always false since no size_t value can be greater than std::numeric_limits<size_t>::max().

Detecting underflow or overflow on addition with signed integers

With signed integers, the addition generates an error in the following cases.

• Overflow: Both operands are positive and the result is negative.

• Underflow: Both operands are negative and the result is positive.

Summary of underflow or overflow detection by type and operation

The following table summarizes the right ways to detect error conditions on the various arithmetical operations
on signed and unsigned types. The generic names MIN, MAX and ABS() are used to designate the minimum value,
maximum value and function returning the absolute value for the given type. In C, you have to select the right
constants and functions. In C++, use the generic mechanisms of the language. The operands are named a and b;
the result is named c.

Addition (unsigned):
if (a > MAX - b) {
 // ERROR
}
else {
 c = a + b;
}

Addition (signed):
c = a + b;
if ((a > 0 && b > 0 && c <= 0) || (a < 0 && b < 0 && c >= 0))
{
 // ERROR
}

Subtraction (unsigned):
if (a < b) {
 // ERROR
}
else {
 c = a - b;
}

Subtraction (signed):
c = a - b;
if ((a > 0 && b < 0 && c <= 0) || (a < 0 && b > 0 && c >= 0))
{
 // ERROR
}

Multiplication
(unsigned): if (b != 0 && a > (MAX / b)) {

 // ERROR
}
else {
 c = a * b;
}

Version 3.38-3816 TSDuck Developer’s Guide

107

Multiplication (signed):
if (b != 0 && ABS(a) > ABS(MAX / b)) {
 // ERROR
}
else {
 c = a * b;
}

Division (signed or
unsigned): if (b == 0) {

 // ERROR
}
else {
 c = a / b;
}



Due to rounding effects, the check on multiplication is a bit too aggressive. It detects all error
cases but some marginal valid cases, close to the limit, may be incorrectly detected as errors.
However, implementing accurate overflow detection on multiplication in the general case is
very costly in terms of performance. The proposed solution is a tradeoff.

In TSDuck, the header file tsIntegerUtils.h declares template functions such as ts::bound_check(),
ts::bounded_add() or ts::bounded_sub().

[Rule] Anticipate and mitigate floating point rounding

Floating point types are less prone to underflow and overflow than integers because they are always signed and
their minimum and maximum values are very large. If you really need to check for overflow and underflow, use
the same technique as for signed integers.

The main problem with floating point types is rounding and the accumulation of imprecisions after an arbitrary
large sequence of arithmetical operations.

Never use the equality (==) or inequality (!=) operators on floating point values because these operators check the
(in)equality of binary representations without taking into account rounding and imprecisions.

There are various complex ways to safely compare floating point values. But an accurate implementation should
take into account the complete sequence of arithmetical operations which led to the values to compare. For a
given sequence of operations, there is a given accumulated imprecision and this imprecision must be taken into
account when comparing values. In practice, this is too complicated - and way too slow - to implement.

So, we must adopt a pragmatic approach when comparing floating point values.

Example 1: If we need a relative precision, we should reduce the comparison toward 1.0 and compare it with the
epsilon value of the floating type. However, since epsilon is defined in the C++ standard as the "the difference
between 1 and the least value greater than 1 that is representable in the given floating point type", the accumulated
impression may have exceeded epsilon. So, in practice, it is recommended to compare to some small multiple of
epsilon.

The following C++ function implements a generic numerical equality operator. It takes an additional parameter
named impr (for imprecision) which is the small multiple of epsilon. The default value is 4 and is adequate in most
cases. However, if you compare values which were created by long sequences of arithmetical operations, it is
probably better to use a higher value.

template <typename T>
bool probablyEqual(T a, T b, int impr = 4)
{
 if (std::numeric_limits<T>::is_integer) {
 // T is an integer type, equality is valid.

TSDuck Developer’s Guide Version 3.38-3816

108

 return a == b;
 }
 else {
 // T is a floating point type, equality is fuzzy.
 const T c = std::max(std::abs(a), std::abs(b));
 return c == 0.0 || std::abs(a - b) / c <= impr * std::numeric_limits<T>::epsilon();
 }
}


This example is just for clarity. In practice, we would implement one version for integer types
and one version for floating point types, using SFINAE.

Usage:

float a, b;
...
if (probablyEqual(a, b)) {
 // Consider that a "pragmatically" equals b.
}

In TSDuck, the header file tsFloatUtils.h declares the template function ts::equal_float().

Example 2: In some contexts, a relative precision is useless and an absolute precision is sufficient in practice. If
you handle financial values for instance, the smallest amount of currency is usually a cent.

This means that everything smaller than 0.01 is irrelevant. So, regardless of the values and how they were
computed, it is much simpler to write comparisons this way:

float a, b;
...
if (std::abs(a - b) < 0.005) {
 // Consider that a "pragmatically" equals b for financial data.
}

5.4.1.8. C++ classes

[Rule] The struct data types shall be avoided. Use classes instead.

The struct data types are allowed in C++ for C compatibility only. They are strictly equivalent to classes except that
their fields without explicit scope are public by default (private by default in classes). So, there is no good reason
to use struct in C++.

[Rule] Always declare a method of a class as const when it does not modify the object instance.

The contract is better defined. It asserts that the method will not modify the object. It also allows the method on
const objects.

Example:

class C
{
public:
 void reset(); // this method will potentially modify the object
 void print() const; // this method will not modify the object
};

void f(const C& c)

Version 3.38-3816 TSDuck Developer’s Guide

109

{
 c.print(); // OK
 c.reset(); // ERROR: cannot modify a const object
}

[Rule] Avoid public data members in class declarations.

Public data members give no control on the way the data members are used. Further maintenance is more
difficult if you need to modify the internal structure of the class since you need to maintain a flawed contract.

Instead of publishing the data members, keep them private and export public getters and setters.

Good code:

Bad code:

class Foo
{
public:
 int getCount() const {return _count;}
 void setCount(int c) {_count = c;)
private:
 int _count = 0;
};

class Foo
{
public:
 int count = 0;
};

These two implementations have identical performances, thanks to the inlining of the setter and getter.

But the good code is much more maintainable. You may modify the internal structure of the class, you may
completely remove the _count field, you may add bound checking in the setter, etc. But you will always be able to
maintain the same contract (the two public methods getCount and setCount).

[Rule] When you provide a method with a const std::string& parameter, consider the advantages of
providing an overload with const char* parameter. The same rule applies any other string type.

The type std::string provides a constructor from const char*. So, you may invoke a method with a std::string
parameter using a null terminated C-string or a string literal. But, you should inspect how you use the std::string
parameter within the method. If you simply use its null terminated C-string representation (method
std::string::c_str()), then it is probably faster to overload the method.

The same rule applies to any string type, for instance ts::UString.

Slower code:

Faster code:

void f(const std::string& s)
{
 something(s.c_str());
 ...
}

std::string aString;
f(aString);
f("abcd"); // converted to std::string but
 // only used as C-string internally

void f(const char* s)
{
 something(s);
 ...
}

inline void f(const std::string& s)
{
 f(s.c_str());
}

std::string aString;
f(aString);
f("abcd"); // no conversion

TSDuck Developer’s Guide Version 3.38-3816

110

[Recommendation] Try to define interface classes when possible. An interface class describes the API
for a service which can be implemented by concrete classes.

The characteristics of an interface class are:

• All methods are public.

• All methods are pure virtual.

• There is no field.

• There is no static item.

• There is no constructor.

• There is an empty virtual destructor.

By convention, the name of an interface class ends with the suffix Interface.

The concept of interface class is not defined by the C++ standard. The C++ standard defines the concept of abstract
class but it is less restrictive; an abstract class is a class with at least one pure virtual function.

The interface class is the C++ equivalent of the concept of interface in Java. The C++ interface class is interesting
because it proposes a reasonable approach to multiple inheritance. Because of its characteristics, an interface
class is typically limited to a header file.

Example:

class MutexInterface
{
public:
 virtual bool acquire() = 0; // pure virtual method
 virtual bool release() = 0; // pure virtual method
 virtual ~MutexInterface() {} // empty virtual destructor
};

[Rule] Do not use actual multiple inheritance. A class should inherit from at most one non-interface
class. A class may inherit from multiple interface classes.

Multiple inheritance is a powerful but dangerous concept. Using multiple inheritance from more than one
concrete class often leads to structures which are complex and difficult to understand and maintain. After several
levels of multiple inheritances, the result can be inconsistent sometimes.

The coding rules of some organizations even completely ban all forms of multiple inheritance.

Our coding rules propose a reasonable trade-off which is derived from Java: one "real" superclass and as many
interface classes as necessary (the preceding recommendation defines the non-standard concept of interface
class).

[Recommendation] At the beginning of the declaration of each subclass, define a type definition with
the name SuperClass for the superclass.

This convention gives an easy and reliable way to explicitly invoke a method of the superclass. This is the C++
equivalent of the super keyword in Java.

If the class hierarchy is refactored and a new intermediate class is inserted, simply modify the type definition for
SuperClass, there is no need to browse the entire implementation to track explicit invocations of the superclass.

Note that C++ allows multiple inheritance and it is not possible to define a single superclass in the general case.
But the preceding rule limits the number of non-interface superclasses to one. This single non-interface
superclass is considered as the "actual" superclass which is declared with the SuperClass type definition.

Exception: If a class has no non-interface superclass, the SuperClass type definition is omitted.

Version 3.38-3816 TSDuck Developer’s Guide

111

Example:

class A
{
public:
 void f();
};

class B: public A
{
public:
 // Standard name for superclass, modify it if you change the inheritance
 using SuperClass = A;

 // Override method
 void f()
 {
 // Explicit (and maintainable) invocation of superclass
 SuperClass::f();

 // Specific additional processing in subclass

 }
};

[Rule] In the documentation of a method of a class, clearly indicate if the method needs to be
explicitly invoked by subclasses which override the method. If necessary, also indicate if the
superclass method shall be invoked at the beginning or at the end of the subclass method.

This is entirely dependent on the implementation of the superclass. Only the developer of the superclass can
decide what is necessary.

Example:

class File
{
public:
 // Invoke at beginning of overridden method in subclasses
 void open(const std::string& fileName);

 // Invoke at end of overridden method in subclasses
 void close();
};

When we specialize the class File to add buffering capabilities for instance, the methods open() and close() must
be typically overridden to add the setup and flush of the buffer, respectively. But, while the buffer management is
handled in the subclass, the file management shall remain in the superclass.

class BufferedFile: public File
{
public:
 using SuperClass = File;

 void open(const std::string& fileName)
 {
 SuperClass::open(fileName);
 // ... setup the buffer

TSDuck Developer’s Guide Version 3.38-3816

112

 }

 void close()
 {
 // ... flush the buffer
 SuperClass::close();
 }
};

Exception: This rule does not apply to constructors and destructors. The compiler automatically invokes the
superclass constructor at the beginning of the subclass constructor. It also automatically invokes the superclass
destructor at the end of the subclass destructor.

[Rule] Never overload methods which differ only in the type of integer or pointer parameters.

In some contexts, the default integer type conversions give unexpected results. In case of maintenance of the
code, you may even accidentally break the contract of the class.

Example:

class C
{
public:
 void f(int);
 void f(long); // BAD PRACTICE
};

int a = 1;
long b = 2;

C x:
x.f(a);
x.f(b);

In this example, x.f(a) invokes C::f(int) and x.f(b) invokes C::f(long).

But let’s assume that the initial version of the class C only had one method C::f(int). The user code x.f(b)
invoked C::f(int) since this was the only possible method at that time and the C++ compiler automatically
downgraded b from a long to an int before the call.

Now, in the maintenance phase, assume that you add the C::f(long) method. When recompiling the existing user
code, x.f(b) no longer invokes C::f(int). Now it invokes C::f(long) since this is a better match. And the two
methods may perform very different actions. So, by adding the overload C::f(long), you break the contract and
break the ascending compatibility of your class and the compiler does not even tell you it is different now.

Note 1: This rule is also valid for pointers and integers. Using the literal 0 can be indifferently interpreted by the
compiler as an integer literal or as the null pointer.

Note 2: The terms override and overload shall not be confused. A method of a class overrides another when it
redefines a method with the same name and same profile in a superclass. A method overloads another when it
redefines a method with the same name and a different profile in the same context.

Example:

class A
{
public:
 void f(int i);
};

Version 3.38-3816 TSDuck Developer’s Guide

113

class B: public A
{
public:
 void f(int i); // override A::f(int)
 void g(int i); // overload B::g(const std::string&)
 void g(const std::string& s); // overload B::g(int)
};

[Recommendation] When an overloaded method is overridden in a subclass, override all overloaded
variants, unless there is a good reason to hide some of them or to add a new one.

Hum? This sounds a bit mysterious…

Counter-example: Explanations are always better with an example.

class A
{
public:
 void f(int i);
 void f(const std::string& s);
};

class B: public A
{
public:
 void f(int i);
};

A a;
B b;
a.f(1); // OK, call A::f(int)
a.f("foo"); // OK, call A::f(const std::string&)
b.f(1); // OK, call B::f(int)
b.f("foo"); // ERROR, does not compile, B::f(const std::string&) is hidden

In class A, the method f() is overloaded. There is one version taking an integer as parameter and one version
using a character string. In class B, f() is overridden but only one version is declared, the integer one. As a
consequence, the string one is hidden.

In C++, when you override a method in a subclass, all overloaded versions (methods with the same name in the
superclass) are hidden. Only the explicit declarations in the subclass can be used. This is why B::f(const
std::string&) is hidden in the above example. You cannot use it.

As a general rule, a subclass specializes a contract. It adds or replaces services but does not remove any. This rule
is broken in the example.

Exception: In some cases, it can be legitimate to remove (hide) or add overloaded versions of a method. But this
is tightly linked to the semantics of the object.

[Rule] Never change the default values for the parameters of a function after the function is
published.

Changing the default values changes the contract.

Consider the following function:

void paint(Color c = BLACK);

TSDuck Developer’s Guide Version 3.38-3816

114

All users which invoke paint() without argument are confident that the color will be black. If you later change the
default value to BLUE and recompile the code, the users of the contract will obtain a different result.

[Rule] When overriding a virtual method with default parameters in a derived class, use the same
default values for the parameters.

Counter-example: Let’s review the consequences of breaking this rule. Assume that all shapes should be painted
in black by default, except the rectangles which should be painted in blue by default.

See the following WRONG implementation:

class Shape
{
public:
 // "I see a red door and I want it painted black"
 virtual void paint(Color c = BLACK);
};

class Rectangle: public Shape
{
public:
 // WRONG: overriden method with other defaults
 virtual void paint(Color c = BLUE);
};

See why this implementation gives incorrect results:

Rectangle r1, r2;
Rectangle* p1 = &r1;
Shape* p2 = &r2;

p1->paint(); // Rectangle r1 is painted in BLUE
p2->paint(); // Rectangle r2 is painted in BLACK !

The default values for the parameters are always evaluated in the context of the caller, not the callee. When an
object is accessed through a pointer to a superclass, the context of the caller is the superclass and the superclass'
default parameters are applied.

This is why we impose to keep the same default values for parameters.

To solve the specific problem of the example where actual defaults should be different between the superclass
and the subclass, a safe alternative would be to use overloading instead of default parameters as illustrated
below.

class Shape
{
public:
 virtual void paint(Color c);
 virtual void paint() {paint(BLACK);}
};

class Rectangle: public Shape
{
public:
 virtual void paint(Color c);
 virtual void paint() {paint(BLUE);}
};

Version 3.38-3816 TSDuck Developer’s Guide

115

In this case, the parameter BLUE is evaluated in the context of the callee, which is Rectangle::paint().

5.4.1.9. C++ constructors and destructors

[Rule] For a class type, always declare both default constructor and copy constructor, or none of
them. If any of them should be disabled, explicitly delete them both.

The default and copy constructors are implicit if not defined by the developer. But the default implementation
may not be adequate to your class. So, you shall either provide an explicit version or explicitly disable it.

If you don’t and if you do not want a default or copy constructor because they are meaningless in your context,
the compiler will implicitly generate wrong one for you. If any default object declaration is used, the buggy implicit
constructor will be used.

Example: Disabling default and copy constructor:

class C
{
public:
 // Only my explicit constructors are valid (definition required)
 C(const std::string&);
 C(int, int);
private:
 // Default and copy constructors are explicitly deleted
 C() = delete;
 C(const C&) = delete;
};

[Rule] Always free all resources which are private to the class in a destructor.

Well-designed classes safely prevent resource leaks: memory, open files, locked resources, etc.

[Rule] Always provide a virtual destructor.

If your destructor is not virtual, it will not be invoked when an object is destructed using a delete of a pointer to
one of its super-classes.

Counter-example: Class C1 is a super-class. Subclass C2 has a non-virtual destructor while class VC2 has a virtual
destructor. This example illustrates how instances of class C2 can be incorrectly destructed, leading to potential
resource leaks.

class C1 { ... };
class C2: public C1 { public: ~C2(); };
class VC2: public C1 (public: virtual ~VC2(); };

// later in the code:
const C1* x = new C2();
const C1* y = new VC2();
delete x; // destructor ~C2 is NOT executed !
delete y; // destructor ~VC2 is executed

[Rule] All destructors shall be idempotent.

In rare obscure cases, a destructor may be invoked twice on the same object. This may especially happen if the
destructor is explicitly invoked once and will be likely implicitly invoked later when the object goes out of scope.

Thus, the implementation of a destructor shall be coded so that it is safe when invoked more than once. This is
the meaning of idempotent.

TSDuck Developer’s Guide Version 3.38-3816

116

Counter-example: Non-idempotent destructor:

class C
{
private:
 int* _p;
public:
 C(): _p(new int[8])
 {
 }
 virtual ~C()
 {
 delete[] _p; // double deallocation if invoked twice
 }
};

Example: The following alternative destructor is idempotent:

virtual ~C()
{
 if (_p != nullptr) {
 delete[] _p;
 _p = nullptr;
 }
}

[Rule] In a constructor or destructor, never invoke any virtual method of the class.

During the execution of the constructor and destructor, the vtable of an object instance points to the virtual
methods of the class which defines the current constructor or destructor. On the other hand, during the rest of
the lifetime of the object, the vtable points to the virtual methods of the actual class of the object. This can be very
misleading and hard to debug.

Counter-example: Consider the following class C1 which incorrectly invokes a virtual method in the constructor
and destructor.

class C1
{
public:
 virtual void vf(const std::string& s);

 C1() // constructor
 {
 vf("in constructor");
 }

 ~C1() // destructor
 {
 vf("in destructor");
 }

 void f() // some standard method
 {
 vf("in method f()");
 }
};

Version 3.38-3816 TSDuck Developer’s Guide

117

Now consider a subclass C2 which overwrites the virtual method.

class C2: public C1
{
public:
 virtual void vf(const std::string& s);
};

Given the nature of virtual methods, for a given instance of C1 or any of its subclasses, it may be expected that the
same virtual method vf() will be used in all contexts. But this is not true. Let’s assume that vf() simply displays a
message:

void C1::vf(const std::string& s)
{
 std::cout << "C1::f: " << s << std::endl;
}

void C2::vf(const std::string& s)
{
 std::cout << "C2::f: " << s << std::endl;
}

Consider the following applications code:

int main()
{
 C2 c;
 c.f();
}

The virtual method vf() of the instance c is invoked three times. But this is not the same vf() in all cases. The
application displays this:

C1::f: in constructor
C2::f: in method f()
C1::f: in destructor

Thus, invoking virtual methods in constructors and destructors is error-prone. This may even fail if the methods
are pure virtual in the superclass.

Debugging hint: If an application fails with a message similar to "pure virtual method was called", look for
invocations of virtual methods in constructors and destructors.

[Rule] All constructors shall properly initialize all its super-classes and member fields.

This is an application of a previous rule: all data shall be initialized.

[Rule] In the definition of a constructor, the field initializers must be in the same order as their
declarations in the class declaration.

The order is significant since the field initializers can make a reference to each other. In the recommended
paranoid warning mode, some compilers even reject the constructor definition when the field initializers are in a
different order from the class declaration.

Example:

TSDuck Developer’s Guide Version 3.38-3816

118

class C
{
public:
 C(int x);
private:
 int a;
 int b;
 int c;
};

C::C(int x):
 a(0),
 b(x),
 c(x + 1)
{
 ...
}

[Recommendation] If a constructor has only one argument or if the second and subsequent
arguments have default values, this constructor shall be prefixed by the explicit keyword.

Invoking a constructor with one argument is implicitly used by the compiler to perform an automatic type
conversion. In some cases, this is the right thing to do. But in most cases, this isn’t. As a general rule, you must
analyze the semantic of a constructor with one argument. Does it make sense to convert back and forth between
the class of the constructor and the class of the first argument? If the answer is yes, then leave the constructor
alone. If the answer is no, use explicit. In this context, the keyword explicit means that type conversions shall
be explicit and the compiler will never user this constructor for implicit type conversions.

Example: In the following code, we declare two classes, City and House, which implement two different concepts.
It does not make sense to implicitly convert a House into a City or vice-versa. But it is legitimate that an instance of
House has a property of class City because a house is located into a city. So, we provide a House constructor with an
argument of type City, specifying the location of the constructed house.

class City { ... };

class House
{
public:
 explicit House(const City& location, const char* name = "");
};

Since the second argument of the constructor has a default value, it can be invoked with only one argument of
type City. To avoid the accidental implicit conversion of a City into a House, we use the keyword explicit.

Let’s examine the effect of the absence of explicit keyword using the following incorrect code.

void selectHouse(const House& h);

City paris;
selectHouse(paris); // incorrect usage, we want to select a house, not a city

The function selectHouse() is probably used to select a specific existing house. So, calling selectHouse() with an
argument of type City is incorrect and should be rejected by the compiler. Indeed, there is a compilation error
here, thanks to the explicit keyword. Without this keyword, however, the compiler would implicitly use the
constructor to convert the object of type City into House and selectHouse() is called with a new House object with

Version 3.38-3816 TSDuck Developer’s Guide

119

all default values in the city of paris. This does not make sense.

Exception: When the class of the constructor and the class of its first argument have equivalent semantics with
different representations, it makes sense to allow conversions between the two types. The standard type
std::string has a constructor with one argument of type const char* (i.e. a C-string). The two types are
semantically identical, they are character strings. So, converting between the two is both legitimate and useful.
When a function uses a parameter of type std::string, it is useful to be able to call it with a string literal such as
"foo" (which has type const char*). The compiler implicitly creates a new object of type std::string from the
string literal. This would not be possible if the std::string constructor had the keyword explicit.

5.4.1.10. C++ operators

[Rule] Always provide an assignment operator with the same scope as the copy constructor.

The two operations, assignment operator and copy constructor, are closely related. They should be both enabled
and implemented or both disabled.

Both enabled:

Both disabled:

class C
{
public:
 // implementation required
 C(const C&);
 C& operator=(const C&);
};

class C
{
private:
 // explicitly deleted
 C(const C&) = delete;
 C& operator=(const C&) = delete;
};

[Rule] When provided, the copy constructor and the assignment operator shall have consistent
implementations.

The following two sequences shall have identical results.

Copy constructor:

Assignment operator:

C a;
C b(a);

C a;
C b;
b = a;

But beware that, although consistent, the two implementations are usually not identical. The copy constructor
works on an uninitialized object with no pre-existent state. The assignment operator, on the contrary, works on an
initialized object which may need some clean-up before copy.

[Rule] Prevent self-assignment in an assignment operator.

A self-assignment a = a is a valid but void operation which must be filtered specifically.

Example:

class C
{
public:
 C& operator=(const C&);
 ...
};

C& C::operator=(const C& other)

TSDuck Developer’s Guide Version 3.38-3816

120

{
 if (this != &other) {
 // implement actual assignment here
 ...
 }
 return *this;
}

Consider a class which encapsulates complex dynamic data structures. Assume that you decide that the semantics
of the assignment operator is a deep copy. In the assignment operator, you must first free the previous content of
the object and then duplicate the new content from the assigned value. If the test if (this != &other) is not
present, the effect of the self-assignment would be a reuse-after-free bug.

[Rule] In the assignment operator of a derived class, make sure that the superclass fields are properly
assigned using an explicit invocation to the superclass assignment operator.

Failing to do this may leave the superclass fields in an inconsistent state.

Example:

class D: public C
{
public:
 using SuperClass = C;
 D& operator=(const D&);
 ...
};

D& D::operator=(const D& other)
{
 if (this != &other) {
 // assignment of superclass fields through explicit invocation of superclass
 SuperClass::operator=(other);
 // implement actual assignment of subclass fields here
 ...
 }
 return *this;
}

[Rule] All assignment operators (=, +=, -=, etc.) shall return *this.

This is required to be consistent with the semantic of these operators.

[Rule] The comparison operators, when implemented in a class, must be consistent with each other.

If you implement the operator ==, be sure to also implement != and ensure that for any instances a and b of the
class:

(a != b) == !(a == b)

Similarly, if you implement any of <, ⇐, >, or >=, you must implement them all and ensure that for any instances a
and b of the class:

(a < b) == !(a == b) && !(a > b)
(a <= b) == !(a > b)
(a > b) == !(a == b) && !(a < b)
(a >= b) == !(a < b)

Version 3.38-3816 TSDuck Developer’s Guide

121

In practice, it is only necessary to provide a deep implementation for operators == and <. All other operators can
be implemented using references to the first two.


In C++20, it is no longer possible to define the operator != when you have defined ==. The != is
automatically derived from ==. To face the challenge of compiling the same code with C++17
and C++20, TSDuck defines the macro TS_UNEQUAL_OPERATOR for !=.

Example:

class C
{
public:
 bool operator==(const C& other) const;
 TS_UNEQUAL_OPERATOR(C)
};

When compiled in C++17 mode, the macro TS_UNEQUAL_OPERATOR declare an inline function which returns
!operator==(other). When compiled in C++20 mode, the macro does nothing.

[Rule] When you do not use the final result of an expression using the increment (++) or decrement (--
) unary operators, prefer the prefixed notation (++i, --i) to the postfix notation (i++, i--).

The postfix notation needs to create a temporary object holding the previous value of the object and use this
temporary object as the result of the expression.

For integer or pointer types, this is usually optimized away by the compiler. But for more complex object classes
which redefine these operators, the useless construction and destruction of the temporary object cannot be
avoided. And this can cost some time for nothing.

This is especially the case for the iterators in the standard template library. The following example illustrates two
functionally identical ways of walking through a list of int but the second way is uselessly slower.

std::list<int> x;

// Use ++i on iterator: good
for (std::list<int>::iterator i = x.begin(); i != x.end(); ++i) {

}

// Use i++ on iterator: identical but uselessly slow
for (std::list<int>::iterator i = x.begin(); i != x.end(); i++) {

}

5.4.1.11. C++ object management

[Rule] Never use malloc() and free() in C++, use the new and delete operators.

The C memory allocation routines return raw memory, not objects. Casting the result of malloc() to a pointer to
an object instance is incorrect. This memory area is not a properly initialized object.

On the contrary, the C++ allocation operators manipulate objects. They invoke the proper constructors and
destructors.

[Rule] Objects which were allocated using new[] must be deallocated using delete[].

This is a really annoying feature of C++. The operators for allocating single objects and arrays are different and the
corresponding delete operator must be used. But when a pointer is declared as Foo*, there is no implicit

TSDuck Developer’s Guide Version 3.38-3816

122

indication how the pointed object was allocated. The developer must take care of this.

[Recommendation] Never use dynamically allocated arrays (operator new[]).

The preceding rule demonstrates that using the operator new[] may create confusion when it comes to
deallocation. Moreover, a previous recommendation explicitly recommends avoiding arrays of C++ objects for
other reasons, whether they are statically or dynamically allocated.

Use standard containers from the C++ Standard Template Library (STL) instead of dynamically allocated arrays.
The standard container std::vector, for instance, is a much better alternative.

If you think that you need an array because you will pass it to a C routine which requires the address of an array, a
std::vector is still better than a dynamically allocated array. The C++ Standard specifies than the underlying
representation of the current content of a std::vector must match the representation of an array. Thus, the
following sample code is both legal and safe.

// A C routine which expects an "array"
void legacyFunction(int* buffer, size_t intCount);

std::vector<int> v;
v.resize(100); // or fill the vector the way you like
legacyFunction(&v[0], v.size());

[Rule] Check the size of an instance of std::vector before using the index operator [].

To reference an element in a vector, the C++ standard specifies that the method std::vector::at() performs
bound checking while std::vector::operator[] does not. The difference is typically for performance reason. It is
up to the developer to choose between safety and speed of code for each access.

Example:

int x = 0;
std::vector<int> v(4); // declare a vector with 4 elements
x = v.at(6); // throw exception std::out_of_range
x = v[6]; // read an invalid value in uninitialized memory

Some implementations of the C++ STL add an assertion on the index value in std::vector::operator[]. This means
that, in case of invalid index value, the application is aborted when compiled in debug mode (assertions on). In
production mode, the assertions are off and the invalid index value is unnoticed.

This is normally fine. You should not use invalid index values anyway and the assertion helps the developer in
debug mode. But this is not always the case. There are rare cases where using an invalid index is correct and the
application should not fail in debug mode. See the following counter-example.

Counter-example:

void legacyFunction(int* buffer, size_t intCount);

std::vector<int> v;
legacyFunction(&v[0], v.size());

If the vector v is empty, 0 is an invalid index value and simply getting the address of v[0] may fail in debug mode.
However, this is valid code since v.size() is zero and any address value, even an incorrect one, is fine as first
parameter for legacyFunction() because the function will not access the memory area anyway.

 This is the case for the Microsoft Visual C++ library.

Version 3.38-3816 TSDuck Developer’s Guide

123

Be sure to identify that kind of usage and rewrite the code as follow:

legacyFunction(v.empty() ? nullptr : &v[0], v.size());

[Rule] In function declarations, when a parameter is not an elementary type, not a pointer type or is a
template type, always use a reference. If the contract is to not modify the object, use a const
qualifier.

Not using a reference forces a copy of the object. This can be costly and this may even not compile in the case of
an actual template parameter type without copy constructor.

Good code:

Bad code:

void f(const Foo& x);

template <typename T>
void g(const T& x);

void f(Foo x); // force a copy of a Foo
object

template <typename T>
void g(T x); // call will not compile if
actual type
 // for T has no copy
constructor

[Rule] When catching an exception, always use a reference to avoid a copy of the object.

This is an application of the preceding rule to the exception handling.

Example:

try {

}
catch (const std::exception& e) { // reference to const exception object

}

[Rule] Multiple exception handlers in a try / catch structure must be ordered properly.

In a try / catch structure with multiple exception handlers, an exception is checked against all catch clauses until a
matching one is found. Only the first matching one is used. So, when exception classes are derived from each
other, the most specific catch clauses must come first. Otherwise, they are useless.

Example:

class A: public std::exception {...};
class B: public A {...};

Good code:

Bad code:

TSDuck Developer’s Guide Version 3.38-3816

124

try {
 ...
}
catch (const B& e) {
 // catch all B exceptions
}
catch (const A& e) {
 // catch all A exceptions, including
subclasses
 // of A, except B which are handled above
}

try {
 ...
}
catch (const A& e) {
 // catch all A exceptions,
 // including all subclasses of A
}
catch (const B& e) {
 // never used since B is a subclass of A
 // and was already caught in previous
handler
}

[Rule] Use the guard design pattern to fail safely. Define guard classes for resources. Use destructors
to fail safely.

It is sometimes necessary to reserve, lock or allocate a resource temporarily. This means that something shall be
done at the end of a sequence of statements (release, unlock, deallocate). A problem occurs when an exception is
thrown or a return is inadvertently executed in the middle of the sequence. In this case, the resource does not get
cleaned up.

The guard design pattern is a technique to avoid this. For a given type of resource which needs to be locally
reserved, define an associated guard class which has basically only two operations: a constructor which reserves
the resource and a destructor which releases the resource (whatever reserve and release means for the given
resource). For each sequence of code which reserves the resource, simply create a block of { } where a local
guard object is defined.

Example: This is how the guard pattern is used.

Unsafe code:

Equivalent safe code using a guard class:

Resource myResource;
...
myResource.reserve();
...
...
myResource.release();

Resource myResource;
...
{
 ResourceGuard(myResource); // implicit
reserve()
 ...
 // some exception or return here
 ...
} // implicit release() even on exception or
return

Example: This is how the guard pattern can be implemented.

class Mutex
{
public:
 void acquire() {...}
 void release() {...}
};

class MutexGuard
{
public:
 MutexGuard(Mutex& mutex): _mutex(mutex) {_mutex.acquire();}
 ~MutexGuard() {_mutex.release();}

Version 3.38-3816 TSDuck Developer’s Guide

125

private:
 Mutex& _mutex;
};

And this is how this implementation is used.

Mutex globalMutex;
...
{
 MutexGuard guard (globalMutex); // implicit globalMutex.acquire()
 ...
 // some exception or return here
 ...
} // implicit globalMutex.release() even on exception or return

Application: Use the standard guard type std::lock_guard on std::mutex and std::recursive_mutex.

[Rule] Use the safe pointer design pattern to prevent memory leaks and complex memory tracking.

When comparing C++ to Java, the main C++ nightmare is the memory management: when should I free memory?

A safe pointer (or smart pointer, or shared pointer) is a design pattern which replaces the usage of plain pointers by
a template class which tracks all accesses to a resource. When no more active reference to the object exists, the
object is automatically reclaimed.

Great care shall be taken when designing the safe pointer class (especially the multi-threading aspect). But once
available, C++ memory management becomes almost as easy as Java.

In early versions of TSDuck, before using C++11, a dedicated template class was designed. Now, TSDuck uses the
standard template type std::shared_ptr for all complex pointer managements.

Based on valgrind results on Linux platforms, TSDuck has proven to be memory-safe when using safe pointers
and zero explicit deallocation on any arbitrary large number of dynamically allocated objects with a limited life-
time.

Warning: There are pathological cases where the safe pointer design pattern is ineffective. For instance, when
two objects reference each other but are no longer referenced anywhere else, they are lost. They are not
automatically freed by the safe pointers because references exist. They should be both freed at the same time.
But this situation is typically the symptom of a poorly designed data model. So, the safe pointer design pattern
removes the burden of the technical aspects of the memory management but not the requirement for a correct
design.

[Recommendation] Take care of reentrancy in reusable components. Use an abstract mutex interface
and template reusable components.

If a class is not thread-safe, it is possible to make it thread-safe on the user’s request without much effort and
without performance penalty when thread-safety is not required.

Solution 1: Compile-time selection of the thread-safety model.

Define two mutex classes with identical services.

TSDuck Developer’s Guide Version 3.38-3816

126

class NullMutex
{
public:
 // acquire() and release() are
 // empty and inlined as no code
 void acquire() {}
 void release() {}
};

class RealMutex
{
public:
 // Implement acquire() and release()
 // in the .cpp file
 void acquire();
 void release();
};

The second class implements the actual locking features on one or more environments. Now consider that the
reusable component to implement is a safe pointer (see preceding rule). Define the safe pointer class as follow:

template <typename T, class MUTEX> class SafePointer {...};

In the implementation of the SafePointer class, define an object of the generic type MUTEX to implement the
locking. Whenever you need a thread-safe or non-thread-safe pointer to objects of class Foo, use one of the
following:

SafePointer <Foo, RealMutex> threadSafePointer;
SafePointer <Foo, NullMutex> nonThreadSafePointer;

The first pointer class uses thread-safe code while the second one uses fast code (the inline empty locking services
are optimized away by the compiler). There is exactly zero overhead for the non-thread-safe version but the two
versions share the same source code.

Solution 2: Run-time selection of the thread-safety model.

Define a general abstract mutex interface which declares the basic synchronization services as pure

virtual functions:
class MutexInterface
{
public:
 virtual void acquire() = 0;
 virtual void release() = 0;
 virtual ~MutexInterface() {}
};

Define two subclasses NullMutex and RealMutex. The first one implements inline empty services which do nothing.
The second one implements the actual locking features on one or more environments.

A reusable component can, based on some run-time condition, allocate either a NullMutex instance or a RealMutex
instance. In the non-thread-safe case, the acquire() and release() operations are simple indirect calls to an empty
routine which returns immediately.

Comparison: Performances of the two versions are almost identical in the thread-safe case. The solution 1 offers
the best performance in the non-thread-safe case. But it is slightly more constraining: the selection is done at
compile-time, the mutex guard class must be a template one and the code footprint is larger when both thread-
safe and non-thread-safe usages of the same reusable component are present in the same application.

In TSDuck, we use standard mutex types such as std::mutex or std::recursive_mutex. To implement the solution 1,
TSDuck also defines the class ts::null_mutex which declare the standard methods lock(), unlock(), and
try_lock() as empty inline methods. An instance of ts::null_mutex can be used wherever a std::mutex or
std::recursive_mutex could be used, but doing nothing at zero cost.

Version 3.38-3816 TSDuck Developer’s Guide

127

[Rule] Do not use C-style casts. Use C++ cast operators reinterpret_cast, dynamic_cast, static_cast
and const_cast.

The C++ cast operators provide a better control over which type of casting you want. More appropriate checks are
performed by the compiler or even at run-time (dynamic_cast). The code is also more readable, your intention is
more clearly explained to the maintainer.

The most general cast operator is reinterpret_cast and is equivalent to a C-style cast. There is no check at all. It is
dangerous and most of the time inappropriate. Usually, we need to cast between related types and static_cast or
dynamic_cast is a better option.

Beware of const_cast when it is used to remove the "constness" of an object. By doing so, you break the API
contract if the const object is provided by your caller. Is the const_cast required because you invoke another API
which is badly defined (an argument is not declared as const but not modified anyway)? Or is the const_cast
required because you will actually modify the object? While the former situation is legitimate, the latter is not.

[Recommendation] Use dynamic_cast to check a subclass type.

If a general method working on a superclass needs some specific processing when the object belongs to a given
subclass, this is usually the symptom of a bad design. A virtual method should be defined in the super-class.

But sometimes it is not possible to modify the superclass and it is necessary to use specific code. In this case,
dynamic_cast is the only reliable and safe way to test the subclass of the object.

Example:

class C {...};
class C1 : public C {...};
class C2 : public C {...};

void f(const C& c)
{
 // generic processing on super-class view "c" of the object
 c.someMethod();

 // is this object an instance of C2?
 const C2* p2 = dynamic_cast<const C2*>(&c);
 if (p2 != 0) {
 // yes, the object is an instance of C2
 // specific processing on C2 sub-class view "*p2" of the object
 p2->someMethodOfC2();
 }
}

Note 1: Be aware that dynamic_cast is allowed only if the superclass is polymorphic, i.e. if it has at least one virtual
method. A virtual destructor is sufficient.

Note 2: Using dynamic_cast requires that the C++ compiler supports Run-Time Type Information (RTTI). All modern
C++ compilers on desktop and server platforms support RTTI. But, on some constrained embedded platforms, the
C++ compiler may not support RTTI and dynamic_cast is rejected by the compiler. In that case, you have to
determine the actual subclass by some other way and then use static_cast after verifying the actual subclass
type.

[Rule] Do not use exit() or std::exit(), except in case of emergency termination.

In C++, exit() only guarantees the proper destruction of global objects. The destructors of pending local objects
are not invoked. If those destructors have external effects (flushing a cache, closing a file, etc.), the state of some
external resources may not be consistent.

To perform an early exit of the program, throw an exception. Use a dedicated application-defined exception and

TSDuck Developer’s Guide Version 3.38-3816

128

ensure that no function catches this exception (beware of generic catch (…) structures). In multi-threaded
applications, this is a little bit more complicated; you need to synchronize the termination of all threads.

In the main program, to return an error code to the operating system, do not call exit(), perform a return
instruction with the appropriate exit code.

[Rule] Do not use va_start, va_arg and va_end, especially on class types.

These macros were designed for C and not C++. They do not properly invoke constructors.

In C++, variable argument lists are handled in a much safer way using std::initializer_list and variadic
templates.

In TSDuck, the class ts::ArgMix and its subclasses are designed to transparently support type-safe heterogeneous
variable argument lists. Sample usages can be found in methods ts::UString::format() and ts::UString::scan().

[Rule] Never declare a function with an argument being an array of objects when subclasses exist for
this class.

This practice has very dangerous side effects on subclasses. This introduces bugs which are very hard to track.

Example:

class A
{
public:
 int a;
 A(): a(1) {}
};

class B: public A
{
public:
 int b;
 B(): b(2) {}
};

void f(A array[], size_t elemCount)
{
 // update second element of array
 if (elemCount >= 2) {
 array[1].a = 47;
 }
}

B x[2];
f(x, 2); // do you think that x[1].a is updated ?

std::cout << x[0].a << ", " << x[0].b << ", "
 << x[1].a << ", " << x[1].b << std::endl;

The last instruction prints "1, 47, 1, 2". The function f() has corrupted the subclass fields of x[0].

The same buggy effect is obtained when the function is defined using a pointer instead of an array:

void f(A* array, size_t elemCount)

Alternatives: If you really need that function, you must overload it for all possible subclasses of A. And if new
subclasses of A are created in the future, you must remember to overload the function for all new subclasses.
Since this is a maintenance challenge, this kind of function should really be avoided anyway.

Version 3.38-3816 TSDuck Developer’s Guide

129

[Recommendation] Avoid using arrays of C++ objects. Use standard containers from the STL instead.

The preceding rule is a good illustration of the danger of arrays of objects in C++.

There is almost no case where using an array is better than using the standard container std::vector, neither in
performance nor in functionalities.

[Rule] Never assign objects through dereferencing a pointer to a base class.

The assignment operator cannot be virtual (at least in its strict definition). By using the assignment through
dereferencing a pointer to a base class, the actual assignment operator is the one from the superclass. The
assignment of the object will be partial (slicing effect) and the object can be left in an inconsistent state.

Example:

class Fruit
{
public:
 Fruit& operator=(const Fruit&);
 ...
};

class Apple: public Fruit
{
public:
 Apple& operator=(const Apple&);
 ...
};

class Tomato: public Fruit
{
public:
 Tomato& operator=(const Tomato&);
 ...
};

Apple apple;
Tomato tomato;

Fruit* p1 = &apple;
Fruit* p2 = &tomato;

*p1 = *p2; // Legal but WRONG !

The above assignment is legal and compiles. However, since the assignment operator cannot be virtual, it invokes
the assignment operator of the superclass, i.e. the method Fruit::operator=(const Fruit&). In practice, the
common Fruit fields of an Apple object will be assigned with the common Fruit fields of a Tomato object. The
specialized Apple fields of the object are left unmodified and, thus, possibly inconsistent with the new values of the
common Fruit fields.

Honestly, this is weird to assign a tomato into an apple, even if both are fruits!

We reach here the limitation of the virtual vs. non-virtual method model. This model works fine as long as the
virtual / non-virtual method works on one object only (this object). But when the method is designed to work on
two objects globally, as it is the case for the assignment, there is no good solution.

5.4.2. C++ coding conventions

This section is present to fulfil the required separation of immutable rules and recommendations from potentially

TSDuck Developer’s Guide Version 3.38-3816

130

replaceable conventions, as explained in section 5.2.

5.4.2.1. Source code formatting

[Convention] The file name extensions by file type are .h for C++ header files and .cpp for C++ source
files.

For C++ files, several conventions exist: .h, .hpp, .hxx, .H for headers, .cpp, .cxx, .C for source files. The selected
convention has a large adoption and is good enough.

[Convention] Indentation: use 4 space characters without tabulation.

Using less than 4 spaces is not clear enough. Using 8 spaces moves too fast to the right.

5.4.2.2. Modularity

[Convention] When a module is specialized in the management of one data type (object-oriented
design), the base name of the module files is the data type name, using the same lower/upper case
letters.

Example: The class ts::UString is declared in file tsUString.h and defined in file tsUString.cpp.

[Convention] The file name of a module containing a C++ class is built from the concatenation of all
nested namespaces and the class name.

This way, the class declaration can be easily found.

Example: The class named ts::xml::Element is declared in file tsxmlElement.h and defined in file tsxmlElement.cpp.

[Convention] Non-inline template methods or methods of template classes are grouped at the end of
the header file, in a clearly identified section.

The portability of the C++ templates is a challenge. Most compilers require the definition of the template methods
to be available during the compilation of the modules which use them. So, we need to have them in the header
file.

5.4.2.3. Naming conventions

There are many naming conventions in the C and C++ communities. This is sometimes both the most sensitive
part for the developers and the less important for the quality of the code. Discussing which naming convention is
the best one is a waste of time. There is no best one. But many are good enough. The quality of the code only
depends on the strict and consistent application of one single good enough naming convention.

This section describes the naming conventions for the C++ language in the TSDuck project. Simply use them.

[Convention] All entities which are defined within the project shall be declared within the namespace
named ts.

This is a trade-off between readability and usability. Using a more significant but longer namespace such as
tsduck would appear as painful to developers who could be tempted to disobey the "no using namespace directive"
rule.

[Rule] Multiple nested namespaces may be defined within the namespace ts.

Typically, there is one inner namespace per subproject or logical group of classes.

Developers are encouraged to use short but meaningful namespaces (4 or 5 characters maximum). Using
acronyms is acceptable.

Typical nested namespaces are ts::xml, ts::json, ts::tlv.

Version 3.38-3816 TSDuck Developer’s Guide

131

[Convention] Namespaces are composed of lowercase letters or digits only.

No capital letter, no underscore.

As mentioned in the preceding rules, all entities are in the namespace ts or in one of its inner namespaces.

[Convention] Preprocessing macro names (#define) are composed of uppercase letters and digits only.
Words are separated by underscores. All macro names start with the prefix TS_.

Example:

#define TS_FOO_VERSION 47
#define TS_INCR(x) (...)

[Convention] Use a verb as the central component of the name for functions that do something. Use
an imperative form for the name of functions returning a boolean value. Such functions typically
start with is or has, depending on what they return.

Example:

namespace ts {
 class Foo
 {
 public:
 Foo(...);
 ~Foo();
 void load(...);
 void save(...) const;
 bool isEmpty() const;
 bool hasChildren() const;
 private:
 // ... internal fields
 };
}

[Convention] Class names, type names, public static functions, non-member (global) functions use a
mixed case convention, without underscore, starting with an uppercase letter.

See examples below.

[Convention] Non-static public member fields and functions use a mixed case convention, without
underscore, starting with a lowercase letter.

When reading code, it is useful to differentiate static and non-static members. Static members are class-wide;
their name starts with an uppercase letter. Non-static members applies to one instance; their name starts with an
lowercase letter.

See examples below.

[Convention] Public member fields and local variables (in functions) use either a mixed case
convention, without underscore, starting with a lowercase letter, or an all-lowercase convention with
underscores.

The dual convention is unfortunate in TSDuck. This is the result of history. However, as mentioned in section
5.3.1.7, "do not rewrite existing code for the sole purpose of applying coding guidelines".

[Convention] Public constants use uppercase letters with underscores to separate words.

See examples below.

TSDuck Developer’s Guide Version 3.38-3816

132

[Convention] Private entities of any sort use the same convention as their public counterpart but
start with an underscore.

When reading code, it is important to understand the scope of an action, public or private. Modifying a public field
may break the interface contract of the class while modifying a private field only requires a local analysis. Private
fields are identified by their leading underscore.

Example:

namespace ts {
 void GlobalFunction(); // global function, not in a class
 typedef Foo* FooPtr; // type name
 class ClassName // class name
 {
 public:
 static const size_t MAX_SIZE = ...; // constant
 int somePublicField; // public member field
 void someMemberFunction(); // public member function
 static void SomeStaticFunction(); // public static function
 private:
 int _somePrivateField; // private member field
 int _some_private_field; // also acceptable
 void _somePrivateMemberFunction(); // private member function
 static void _SomePrivateStaticFunc(); // private static function
 };
}

void ts::ClassName::someMemberFunction()
{
 uint32_t messageIndex; // local variable
 uint32_t message_index; // also acceptable
}

[Convention] In all mixed case conventions, acronyms are all-uppercase, or all-lowercase at the
beginning of the name.

Example:

typedef uint16_t TCPOrUDPPort;
TCPOrUDPPort tcpDefaultPort = 80;
static TCPOrUDPPort _udpDefaultPort = 80;

[Convention] Values in enum types are composed of uppercase letters and digits only. Words are
separated by underscores. In pure enum types (ie. not enum classes), a common prefix which is
derived from the type name is prepended to all values.

Example:

namespace ts {
 enum Counter {
 COUNTER_ONE,
 COUNTER_TWO
 };
}

[Convention] Conditional compilation of debug code is allowed using the symbol DEBUG. When DEBUG is

Version 3.38-3816 TSDuck Developer’s Guide

133

undefined, no debug code shall be compiled.

This symbol shall not be defined in any header file. It shall be defined by the compilation environment (makefile,
IDE compilation profile, etc.)

As an exception, the macro DEBUG does not start with the required TS_ prefix because DEBUG is a common symbol
which is recognized by many libraries to trigger debug-specific code.

5.4.2.4. Syntax formatting conventions

Just like naming conventions, the syntax formatting conventions are subject to discussion. And, similarly, there is
no best one. We must simply adopt one and use it consistently in all code. Most IDE’s can be configured to
automatically enforce these settings when typing code. This is possible with Emacs, Eclipse, Microsoft Visual
Studio or Qt Creator.

[Convention] Add a space character in the following locations: before and after binary or ternary
operators, before a group of one or more (in an expression, after a group of one or more) or] in an
expression, after a ,.

Exception: no space before , or ;.

Example:

a = (b + c) * ((e / 4) % 3);
x = y > size ? y : size;
p = f(a, b, c[i] + 1);

[Convention] Do not use any space character before (in a function declaration, definition or call.
Similarly, do not use any space character before [in an array declaration or reference.

Example:

void foo(char* name, size_t size);
char buffer[200];
buffer[0] = 'a';
foo(buffer, sizeof(buffer));

[Convention] Comment lines must be aligned on the code they refer to.

Good code:

Bad code:

void f(int x)
{
 // about the test
 if (x > 1) {
 // about the zero
 x = 0;
 }
}

void f(int x)
{
 // about the test
 if (x > 1) {
 // about the zero
 x = 0;
 }
}

[Convention] Multi-lines comments shall be formatted using // on each line. All lines which belong to
the same logical comment shall be aligned.

A previous rule explains why single-line C++-style comments are safer than multi-line C-style comments.

Example:

TSDuck Developer’s Guide Version 3.38-3816

134

 // This is a comment
 // on several lines.

Exception: For self-documentation (Doxygen for instance), use the required conventions for the corresponding
documentation extraction tool.

[Convention] The function definition has its initial { on a new line. The parameters are listed on one
line, if this makes the line not too long.

Example:

void FunctionCode(const char* name, size_t size)
{
 ...
}

[Convention] In a function declaration, definition or call, when the parameter list is too long to fit on
one line, the parameters are aligned on the opening parenthesis and there must be exactly one
parameter per line.

Example:

MyFunction("abcd", size, 47); // short line

MyFunction(tsCallingSomethingVeryVeryLongAndUnreadable(a + 45 * x, "title"),
 size,
 47); // long statement: one parameter per line

In the first example, using one parameter per line would be counter-productive. The code would be bloated and
less readable. So, if everything fit on one line, use one line.

In the second example above, putting the two parameters size, 47 on the same line could make the careless
reader think that there are only two parameters to the function.

So, either put all parameters on one line or one parameter per line, but not a mixture of the two.

[Convention] The conditional and loop statements have their initial { on the same line. The closing } is
on its own line. The else if construction is on one line.

Example:

if (x == a) {
 ...
}
else if (y < b) {
 ...
}
else {
 ...
}

[Convention] The switch statement has its initial { on the same line. The various case entries and the
optional default entry are on individual lines. They are indented from the switch.

Example:

Version 3.38-3816 TSDuck Developer’s Guide

135

switch (state) {
 case TS_START:
 print("started");
 break;
 case TS_CONTINUE:
 case TS_END:
 print("ok");
 break;
 default:
 print("error");
 break;
}

[Convention] The namespace declaration has its initial { on the same line. The closing } is on its own
line. The content of the namespace is indented.

Example:

namespace ts {
 namespace proj {
 void foo();
 }
}

[Convention] The class declaration has its initial { on a new line. The public, protected and private
keywords are aligned on the {.

Example:

class C
{
public:
 void init();
private:
 void _reset();
};

Remember that the closing } of a class declaration must be followed by a ;. This is a typical C++ oddity and a
common source of compilation syntax errors.

[Convention] In template class declarations and definitions, the template part is on a separate line
with the same alignment as the declaration or definition.

Example:

template <typename T, class MUTEX>
class SafePointer
{
 ...
};

template <typename T, class MUTEX>
ts::SafePointer<T,MUTEX>& operator=(T* p)
{
 ...

TSDuck Developer’s Guide Version 3.38-3816

136

}

[Convention] In the definition of a constructor, the field initializers are indented and separated one
per line.

Example:

class C
{
public:
 C(int x);
private:
 int _a;
 int _b;
 int _c;
};

C::C(int x):
 _a(0),
 _b(x),
 _c(x + 1) // be careful, no comma on last field initializer
{
 ...
}

[Convention] If a sequence of stream output operators << is too long to fit on one line, the <<
operators are aligned on multiple lines.

Example:

std::cout << "title: " << title
 << ", message: " << message
 << std::endl;

5.4.2.5. Doxygen self-documentation

[Convention] All Doxygen commands in embedded comments in source files shall be introduced with
the @ character (e.g. @file, @param, @return, etc.)

There are two syntaxes for Doxygen commands, starting with a @ or with a \. For consistency, all developers shall
use one single common convention. The syntax using @ is preferred since it is compatible with Javadoc.

[Convention] In C++ source files, the Doxygen comment blocks shall be formatted using //! on each
line. All lines which belong to the same logical documentation block shall be aligned.

Example:

 //!
 //! ... Doxygen documentation commands
 //!

There are two main syntaxes for Doxygen comment blocks in C++, one using the C-style comment /** and one
using the C++-style comment //!. For consistency, all developers shall use one single common convention.

A previous rule explains why single-line C++-style comments are safer than multi-line C-style comments.

Version 3.38-3816 TSDuck Developer’s Guide

137

[Rule] When an entity is in a Doxygen-documented source file, all its components shall be documented
without exception.

The brief description of the entity (@brief) is mandatory. The detailed description (@details) is optional if the entity
is so simple that the brief description is sufficient.

Functions and methods shall document all their parameters and their returned value (if any).

Enumeration types shall document all their values individually in addition to the documentation of the type.

Hint 1: The mandatory documentation of all fields, functions, methods, and their parameters can be enforced
using the following directive in the Doxyfile:

WARN_NO_PARAMDOC = YES

Hint 2: The @brief and @details commands do not need to be explicitly present. The first item is implicitly the
brief description and the detailed description is implicitly everything that follows a blank line after the brief
description. The implicit notation is more readable in the source code for developers and produces the same
documentation.

Example: The following two Doxygen blocks are equivalent.

 //!
 //! @brief This is the brief description of the next item.
 //! @details This is the long and detailed description.
 //! The Doxygen commands can be omitted if a blank line
 //! separates the brief and detailed description.
 //!

 //!
 //! This is the brief description of the next item.
 //! This is the long and detailed description.
 //! The Doxygen commands can be omitted if a blank line
 //! separates the brief and detailed description.
 //!

This behavior is allowed when the Doxyfile contains the following directive:

JAVADOC_AUTOBRIEF = YES

Hint 3: Individual parameters or values can be documented on one line after the element itself if the
documentation contains only a brief description.

Example: The following two notations are equivalent. Note that the first one is more compact and probably more
readable.

 //!
 //! Flags for the @c Hexa family of functions
 //!
 enum HexaFlags {
 HEX_HEXA = 0x0001, //!< Dump hexa values
 HEX_ASCII = 0x0002, //!< Dump ascii values

 };

 //!
 //! Flags for the @c Hexa family of functions

TSDuck Developer’s Guide Version 3.38-3816

138

 //!
 enum HexaFlags {
 //!
 //! Dump hexa values
 //!
 HEX_HEXA = 0x0001,
 //!
 //! Dump ascii values
 //!
 HEX_ASCII = 0x0002,

 };

Version 3.38-3816 TSDuck Developer’s Guide

139

Appendix A: PSI/SI Signalization Reference
All signalization tables and descriptors which are supported by TSDuck are documented in the TSDuck user’s
guide, appendix D "PSI/SI XML Reference Model".

A.1. PSI/SI tables

The table below summarize all available PSI/SI tables in TSDuck and the reference of the standard which specifies
them.

XML name C++ class Defining document

AIT AIT ETSI TS 101 812, 10.4.6

ATSC_EIT ATSCEIT ATSC A/65, 6.5

BAT BAT ETSI EN 300 468, 5.2.2

BIT BIT ARIB STD-B10, Part 2, 5.2.13

cable_emergency_alert_table CableEmergencyAlertTable ANSI/SCTE 18, 5

CAT CAT ISO/IEC 13818-1, ITU-T H.222.0, 2.4.4.6

CDT CDT ARIB STD-B21, 12.2.2.2

CIT CIT ETSI TS 102 323, 12.2

CVCT CVCT ATSC A/65, 6.3.2

DCCSCT DCCSCT ATSC A/65, 6.8

DCCT DCCT ATSC A/65, 6.7

discontinuity_information_table DiscontinuityInformationTable ETSI EN 300 468, 7.1.1

DSMCC_stream_descriptors_table DSMCCStreamDescriptorsTable ISO/IEC 13818-6, 9.2.2 and 9.2.7

EIT EIT ETSI EN 300 468, 5.2.4

ERT ERT ARIB STD-B10, Part 3, 5.1.2

ETT ETT ATSC A/65, 6.6

INT INT ETSI EN 301 192, 8.4.3

ITT ITT ARIB STD-B10, Part 3, 5.1.3

LDT LDT ARIB STD-B10, Part 2, 5.2.15

LIT LIT ARIB STD-B10, Part 3, 5.1.1

MGT MGT ATSC A/65, 6.2

NBIT NBIT ARIB STD-B10, Part 2, 5.2.14

NIT NIT ETSI EN 300 468, 5.2.1

PAT PAT ISO/IEC 13818-1, ITU-T H.222.0, 2.4.4.3

PCAT PCAT ARIB STD-B10, Part 2, 5.2.12

PMT PMT ISO/IEC 13818-1, ITU-T H.222.0, 2.4.4.8

RCT RCT ETSI TS 102 323, 10.4.2

RNT RNT ETSI TS 102 323, 5.2.2

TSDuck Developer’s Guide Version 3.38-3816

140

XML name C++ class Defining document

RRT RRT ATSC A/65, 6.4

RST RST ETSI EN 300 468, 5.2.7

SAT SAT ETSI EN 300 468, 5.2.11

SDT SDT ETSI EN 300 468, 5.2.3

SDTT SDTT ARIB STD-B21, 12.2.1.1

selection_information_table SelectionInformationTable ETSI EN 300 468, 7.1.2

splice_information_table SpliceInformationTable ANSI/SCTE 35, 9.2

STT STT ATSC A/65, 6.1

TDT TDT ETSI EN 300 468, 5.2.5

TOT TOT ETSI EN 300 468, 5.2.6

TSDT TSDT ISO/IEC 13818-1, ITU-T H.222.0, 2.4.4.12

TVCT TVCT ATSC A/65, 6.3.1

UNT UNT ETSI TS 102 006, 9.4.1

A.2. PSI/SI descriptors

The table below summarize all available PSI/SI desciptors in TSDuck and the reference of the standard which
specifies them.

XML name C++ class Defining document

AAC_descriptor AACDescriptor ETSI EN 300 468, H.2.1

adaptation_field_data_descripto
r

AdaptationFieldDataDescriptor ETSI EN 300 468, 6.2.1

af_extensions_descriptor AFExtensionsDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.99

ancillary_data_descriptor AncillaryDataDescriptor ETSI EN 300 468, 6.2.2

announcement_support_descriptor AnnouncementSupportDescriptor ETSI EN 300 468, 6.2.3

application_descriptor ApplicationDescriptor ETSI TS 102 809, 5.3.5.3

application_icons_descriptor ApplicationIconsDescriptor ETSI TS 102 809, 5.3.5.6.2

application_name_descriptor ApplicationNameDescriptor ETSI TS 101 812, 10.7.4.1

application_recording_descripto
r

ApplicationRecordingDescripto
r

ETSI TS 102 809, 5.3.5.4

application_signalling_descript
or

ApplicationSignallingDescript
or

ETSI TS 102 809, 5.3.5.1

application_storage_descriptor ApplicationStorageDescriptor ETSI TS 102 809, 5.3.10.1

application_usage_descriptor ApplicationUsageDescriptor ETSI TS 102 809, 5.3.5.5

area_broadcasting_information_d
escriptor

AreaBroadcastingInformationDe
scriptor

ARIB STD-B10, Part 2, 6.2.55

association_tag_descriptor AssociationTagDescriptor ISO/IEC 13818-6 (DSM-CC), 11.4.2

ATSC_AC3_audio_stream_descripto
r

ATSCAC3AudioStreamDescriptor ATSC A/52, A.4.3

Version 3.38-3816 TSDuck Developer’s Guide

141

XML name C++ class Defining document

ATSC_EAC3_audio_descriptor ATSCEAC3AudioDescriptor ATSC A/52, G.3.5

ATSC_stuffing_descriptor ATSCStuffingDescriptor ATSC A/65, 6.9.8

ATSC_time_shifted_service_descr
iptor

ATSCTimeShiftedServiceDescrip
tor

ATSC A/65, 6.9.6

audio_component_descriptor AudioComponentDescriptor ARIB STD-B10, Part 2, 6.2.26

audio_preselection_descriptor AudioPreselectionDescriptor ETSI EN 300 468, 6.4.1

audio_stream_descriptor AudioStreamDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.4

australia_logical_channel_descr
iptor

AustraliaLogicalChannelDescri
ptor

Free TV Australia Operational Practice OP-41,
2.2

auxiliary_video_stream_descript
or

AuxiliaryVideoStreamDescripto
r

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.74 and
ISO/IEC 23002-3

AV1_video_descriptor AV1VideoDescriptor https://aomediacodec.github.io/av1-mpeg2-
ts/

AVC_timing_and_HRD_descriptor AVCTimingAndHRDDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.66

AVC_video_descriptor AVCVideoDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.64

AVS3_video_descriptor AVS3VideoDescriptor T/AI 109-6

basic_local_event_descriptor BasicLocalEventDescriptor ARIB STD-B10, Part 3, 5.2.1

board_information_descriptor BoardInformationDescriptor ARIB STD-B10, Part 2, 6.2.39

bouquet_name_descriptor BouquetNameDescriptor ETSI EN 300 468, 6.2.4

broadcaster_name_descriptor BroadcasterNameDescriptor ARIB STD-B10, Part 2, 6.2.36

C2_bundle_delivery_system_descr
iptor

C2BundleDeliverySystemDescrip
tor

ETSI EN 300 468, 6.4.6.4

C2_delivery_system_descriptor C2DeliverySystemDescriptor ETSI EN 300 468, 6.4.6.1

CA_contract_info_descriptor CAContractInfoDescriptor ARIB STD-B25, Part 1, 4.7.2

CA_descriptor CADescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.16

CA_EMM_TS_descriptor CAEMMTSDescriptor ARIB STD-B25, Part 1, 4.7.1

CA_identifier_descriptor CAIdentifierDescriptor ETSI EN 300 468, 6.2.5

CA_service_descriptor CAServiceDescriptor ARIB STD-B25, Part 1, 4.7.3

cable_delivery_system_descripto
r

CableDeliverySystemDescriptor ETSI EN 300 468, 6.2.13.1

caption_service_descriptor CaptionServiceDescriptor ATSC A/65, 6.9.2

carousel_compatible_composite_d
escriptor

CarouselCompatibleCompositeDe
scriptor

ARIB STD-B10, Part 2, 6.2.46

carousel_identifier_descriptor CarouselIdentifierDescriptor ISO/IEC 13818-6 (DSM-CC), 11.4.1

cell_frequency_link_descriptor CellFrequencyLinkDescriptor ETSI EN 300 468, 6.2.6

cell_list_descriptor CellListDescriptor ETSI EN 300 468, 6.2.7

CI_ancillary_data_descriptor CIAncillaryDataDescriptor ETSI EN 300 468, 6.4.1

component_descriptor ComponentDescriptor ETSI EN 300 468, 6.2.8

component_name_descriptor ComponentNameDescriptor ATSC A/65, 6.9.7

TSDuck Developer’s Guide Version 3.38-3816

142

https://aomediacodec.github.io/av1-mpeg2-ts/
https://aomediacodec.github.io/av1-mpeg2-ts/

XML name C++ class Defining document

conditional_playback_descriptor ConditionalPlaybackDescriptor ARIB STD-B25, Part 2, 2.3.2.6.4

content_advisory_descriptor ContentAdvisoryDescriptor ATSC A/65, 6.9.3

content_availability_descriptor ContentAvailabilityDescriptor ARIB STD-B10, Part 2, 6.2.45

content_descriptor ContentDescriptor ETSI EN 300 468, 6.2.9

content_identifier_descriptor ContentIdentifierDescriptor ETSI TS 102 323, 12.1

content_labelling_descriptor ContentLabellingDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.56

copyright_descriptor CopyrightDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.24

country_availability_descriptor CountryAvailabilityDescriptor ETSI EN 300 468, 6.2.10

CP_descriptor CPDescriptor ETSI EN 300 468, 6.4.2

CP_identifier_descriptor CPIdentifierDescriptor ETSI EN 300 468, 6.4.3

cpcm_delivery_signalling_descri
ptor

CPCMDeliverySignallingDescrip
tor

ETSI TS 102 825-9, 4.1.5 and ETSI TS 102 825-
4, 5.4.5

cue_identifier_descriptor CueIdentifierDescriptor ANSI/SCTE 35, 8.2

CUVV_video_stream_descriptor UWAVideoStreamDescriptor T/UWA 005-2.1

data_broadcast_descriptor DataBroadcastDescriptor ETSI EN 300 468, 6.2.11

data_broadcast_id_descriptor DataBroadcastIdDescriptor ETSI EN 300 468, 6.2.12

data_component_descriptor DataComponentDescriptor ARIB STD-B10, Part 2, 6.2.20

data_content_descriptor DataContentDescriptor ARIB STD-B10, Part 2, 6.2.28

data_stream_alignment_descripto
r

DataStreamAlignmentDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.10

dcc_arriving_request_descriptor DCCArrivingRequestDescriptor ATSC A/65, 6.9.11

dcc_departing_request_descripto
r

DCCDepartingRequestDescriptor ATSC A/65, 6.9.10

default_authority_descriptor DefaultAuthorityDescriptor ETSI TS 102 323, 6.3.3 and, 5.2.2 for
interpretation

deferred_association_tags_descr
iptor

DeferredAssociationTagsDescri
ptor

ISO/IEC 13818-6 (DSM-CC), 11.4.3

digital_copy_control_descriptor DigitalCopyControlDescriptor ARIB STD-B10, Part 2, 6.2.23

DII_location_descriptor DIILocationDescriptor ETSI TS 101 812, 10.8.3.3

download_content_descriptor DownloadContentDescriptor ARIB STD-B21, 12.2.1.1

DSNG_descriptor DSNGDescriptor ETSI EN 300 468, 6.2.14

dtg_guidance_descriptor DTGGuidanceDescriptor The D-Book 7 Part A (DTG), 8.5.3.20

dtg_HD_simulcast_logical_channe
l_descriptor

DTGHDSimulcastLogicalChannelD
escriptor

The D-Book 7 Part A (DTG), 8.5.3.23

dtg_logical_channel_descriptor DTGLogicalChannelDescriptor The D-Book 7 Part A (DTG), 8.5.3.6

dtg_preferred_name_identifier_d
escriptor

DTGPreferredNameIdentifierDes
criptor

The D-Book 7 Part A (DTG), 8.5.3.8

dtg_preferred_name_list_descrip
tor

DTGPreferredNameListDescripto
r

The D-Book 7 Part A (DTG), 8.5.3.7

Version 3.38-3816 TSDuck Developer’s Guide

143

XML name C++ class Defining document

dtg_service_attribute_descripto
r

DTGServiceAttributeDescriptor The D-Book 7 Part A (DTG), 8.5.3.9

dtg_short_service_name_descript
or

DTGShortServiceNameDescriptor The D-Book 7 Part A (DTG), 8.5.3.10

DTS_descriptor DTSDescriptor ETSI EN 300 468, G.2.1

DTS_HD_descriptor DTSHDDescriptor ETSI EN 300 468, G.3.1

DTS_neural_descriptor DTSNeuralDescriptor ETSI EN 300 468, L.1

DTS_UHD_descriptor DVBDTSUHDDescriptor ETSI EN 300 468, annex G

DVB_AC3_descriptor DVBAC3Descriptor ETSI EN 300 468, D.3

DVB_AC4_descriptor DVBAC4Descriptor ETSI EN 300 468, D.7

DVB_enhanced_AC3_descriptor DVBEnhancedAC3Descriptor ETSI EN 300 468, D.5

dvb_html_application_boundary_d
escriptor

DVBHTMLApplicationBoundaryDes
criptor

ETSI TS 101 812, 10.10.3

dvb_html_application_descriptor DVBHTMLApplicationDescriptor ETSI TS 101 812, 10.10.1

dvb_html_application_location_d
escriptor

DVBHTMLApplicationLocationDes
criptor

ETSI TS 101 812, 10.10.2

dvb_j_application_descriptor DVBJApplicationDescriptor ETSI TS 101 812, 10.9.1

dvb_j_application_location_desc
riptor

DVBJApplicationLocationDescri
ptor

ETSI TS 101 812, 10.9.2

DVB_stuffing_descriptor DVBStuffingDescriptor ETSI EN 300 468, 6.2.40

DVB_time_shifted_service_descri
ptor

DVBTimeShiftedServiceDescript
or

ETSI EN 300 468, 6.2.45

eacem_logical_channel_number_de
scriptor

EacemLogicalChannelNumberDesc
riptor

EACEM Technical Report Number TR-030,
9.2.11.2

eacem_preferred_name_identifier
_descriptor

EacemPreferredNameIdentifierD
escriptor

EACEM Technical Report Number TR-030,
9.2.11.2

eacem_preferred_name_list_descr
iptor

EacemPreferredNameListDescrip
tor

EACEM Technical Report Number TR-030,
9.2.11.2

eacem_stream_identifier_descrip
tor

EacemStreamIdentifierDescript
or

EACEM Technical Report Number TR-030,
9.2.11.2

EAS_audio_file_descriptor EASAudioFileDescriptor ANSI/SCTE 18, 5.1.3

EAS_inband_details_channel_desc
riptor

EASInbandDetailsChannelDescri
ptor

ANSI/SCTE 18, 5.1.1

EAS_inband_exception_channels_d
escriptor

EASInbandExceptionChannelsDes
criptor

ANSI/SCTE 18, 5.1.2

EAS_metadata_descriptor EASMetadataDescriptor ANSI/SCTE 164, 5.0

ECM_repetition_rate_descriptor ECMRepetitionRateDescriptor ETSI EN 301 192, 9.7

emergency_information_descripto
r

EmergencyInformationDescripto
r

ARIB STD-B10, Part 2, 6.2.24

EVC_timing_and_HRD_descriptor EVCTimingAndHRDDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.135

EVC_video_descriptor EVCVideoDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.133

event_group_descriptor EventGroupDescriptor ARIB STD-B10, Part 2, 6.2.34

TSDuck Developer’s Guide Version 3.38-3816

144

XML name C++ class Defining document

extended_broadcaster_descriptor ExtendedBroadcasterDescriptor ARIB STD-B10, Part 2, 6.2.43

extended_channel_name_descripto
r

ExtendedChannelNameDescriptor ATSC A/65, 6.9.4

extended_event_descriptor ExtendedEventDescriptor ETSI EN 300 468, 6.2.15

external_application_authorizat
ion_descriptor

ExternalApplicationAuthorizat
ionDescriptor

ETSI TS 102 809, 5.3.5.7

external_ES_ID_descriptor ExternalESIdDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.46

FMC_descriptor FMCDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.44

frequency_list_descriptor FrequencyListDescriptor ETSI EN 300 468, 6.2.17

FTA_content_management_descript
or

FTAContentManagementDescripto
r

ETSI EN 300 468, 6.2.18

genre_descriptor GenreDescriptor ATSC A/65, 6.9.13

graphics_constraints_descriptor GraphicsConstraintsDescriptor ETSI TS 102 809, 5.3.5.8

green_extension_descriptor GreenExtensionDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.104

HEVC_hierarchy_extension_descri
ptor

HEVCHierarchyExtensionDescrip
tor

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.102

HEVC_operation_point_descriptor HEVCOperationPointDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.100

HEVC_subregion_descriptor HEVCSubregionDescriptor ISO/IEC 13818-1, 2.6.138

HEVC_tile_substream_descriptor HEVCTileSubstreamDescriptor ISO/IEC 13818-1 clasue 2.6.122

HEVC_timing_and_HRD_descriptor HEVCTimingAndHRDDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.97

HEVC_video_descriptor HEVCVideoDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.95

hierarchical_transmission_descr
iptor

HierarchicalTransmissionDescr
iptor

ARIB STD-B10, Part 2, 6.2.22

hierarchy_descriptor HierarchyDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.6

hybrid_information_descriptor HybridInformationDescriptor ARIB STD-B10, Part 2, 6.2.58

IBP_descriptor IBPDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.34

image_icon_descriptor ImageIconDescriptor ETSI EN 300 468, 6.4.7

ip_signalling_descriptor IPSignallingDescriptor ETSI TS 101 812, 10.8.2

IPMAC_generic_stream_location_d
escriptor

IPMACGenericStreamLocationDes
criptor

ETSI EN 301 192, 8.4.5.15

IPMAC_platform_name_descriptor IPMACPlatformNameDescriptor ETSI EN 301 192, 8.4.5.2

IPMAC_platform_provider_name_de
scriptor

IPMACPlatformProviderNameDesc
riptor

ETSI EN 301 192, 8.4.5.3

IPMAC_stream_location_descripto
r

IPMACStreamLocationDescriptor ETSI EN 301 192, 8.4.5.14

ISDB_access_control_descriptor ISDBAccessControlDescriptor ARIB STD-B10, Part 2, 6.2.54

ISDB_component_group_descriptor ISDBComponentGroupDescriptor ARIB STD-B10, Part 2, 6.2.37

ISDB_connected_transmission_des
criptor

ISDBConnectedTransmissionDesc
riptor

ARIB STD-B10, Part 2, 6.2.41

ISDB_hyperlink_descriptor ISDBHyperlinkDescriptor ARIB STD-B10, Part 2, 6.2.29

Version 3.38-3816 TSDuck Developer’s Guide

145

XML name C++ class Defining document

ISDB_LDT_linkage_descriptor ISDBLDTLinkageDescriptor ARIB STD-B10, Part 2, 6.2.40

ISDB_network_identifier_descrip
tor

ISDBNetworkIdentifierDescript
or

ARIB STD-B21, Part 2, 9.1.8.3

ISDB_target_region_descriptor ISDBTargetRegionDescriptor ARIB STD-B10, Part 2, 6.2.27

ISDB_terrestrial_delivery_syste
m_descriptor

ISDBTerrestrialDeliverySystem
Descriptor

ARIB STD-B10, Part 2, 6.2.31

ISO_639_language_descriptor ISO639LanguageDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.18

ISP_access_mode_descriptor ISPAccessModeDescriptor ETSI EN 301 192, 8.4.5.16

J2K_video_descriptor J2KVideoDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.80

JPEG_XS_video_descriptor JPEGXSVideoDescriptor ISO/IEC 13818-1 2.6.127, ITU-T H.222.0

LCEVC_linkage_descriptor LCEVCLinkageDescriptor ISO/IEC 13818-1 (Amd.1) 2.6.137, ITU-T
H.222.0

LCEVC_video_descriptor LCEVCVideoDescriptor ISO/IEC 13818-1 (Amd.1) 2.6.137, ITU-T
H.222.0

linkage_descriptor LinkageDescriptor ETSI EN 300 468, 6.2.19

linkage_descriptor SSULinkageDescriptor ETSI EN 300 468, 6.2.19

local_time_offset_descriptor LocalTimeOffsetDescriptor ETSI EN 300 468, 6.2.20

logo_transmission_descriptor LogoTransmissionDescriptor ARIB STD-B10, Part 2, 6.2.44

m4mux_timing_descriptor M4MuxTimingDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.54

M4MuxBufferSize_descriptor M4MuxBufferSizeDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.50

maximum_bitrate_descriptor MaximumBitrateDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.26

Media_service_kind_descriptor MediaServiceKindDescriptor ISO/IEC 13818-1 (Amd.1) 2.6.141

message_descriptor MessageDescriptor ETSI EN 300 468, 6.4.7

metadata_descriptor MetadataDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.60

metadata_pointer_descriptor MetadataPointerDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.58

metadata_STD_descriptor MetadataSTDDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.62

mosaic_descriptor MosaicDescriptor ETSI EN 300 468, 6.2.21

MPEG2_AAC_audio_descriptor MPEG2AACAudioDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.68

MPEG2_stereoscopic_video_format
_descriptor

MPEG2StereoscopicVideoFormatD
escriptor

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.84

MPEG4_audio_descriptor MPEG4AudioDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.38

MPEG4_text_descriptor MPEG4TextDescriptor ITU-T H.222.0, 2.6.70 and ISO/IEC 14496-17

MPEG4_video_descriptor MPEG4VideoDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.36

MPEGH_3D_audio_descriptor MPEGH3DAudioDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.106

MPEGH_3D_audio_multi_stream_des
criptor

MPEGH3DAudioMultiStreamDescri
ptor

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.114

MPEGH_3D_audio_scene_descriptor MPEGH3DAudioSceneDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.110

MPEGH_3D_audio_text_label_descr
iptor

MPEGH3DAudioTextLabelDescript
or

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.112

TSDuck Developer’s Guide Version 3.38-3816

146

XML name C++ class Defining document

multilingual_bouquet_name_descr
iptor

MultilingualBouquetNameDescri
ptor

ETSI EN 300 468, 6.2.22

multilingual_component_descript
or

MultilingualComponentDescript
or

ETSI EN 300 468, 6.2.23

multilingual_network_name_descr
iptor

MultilingualNetworkNameDescri
ptor

ETSI EN 300 468, 6.2.24

multilingual_service_name_descr
iptor

MultilingualServiceNameDescri
ptor

ETSI EN 300 468, 6.2.25

multiplex_buffer_descriptor MultiplexBufferDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.52

multiplex_buffer_utilization_de
scriptor

MultiplexBufferUtilizationDes
criptor

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.22

MuxCode_descriptor MuxcodeDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.48 and
ISO/IEC 14496-1, 7.4.2.5

MVC_extension_descriptor MVCExtensionDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.78

MVC_operation_point_descriptor MVCOperationPointDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.82

network_change_notify_descripto
r

NetworkChangeNotifyDescriptor ETSI EN 300 468, 6.4.9

network_download_content_descri
ptor

NetworkDownloadContentDescrip
tor

ARIB STD-B21, 12.2.1.1

network_name_descriptor NetworkNameDescriptor ETSI EN 300 468, 6.2.27

node_relation_descriptor NodeRelationDescriptor ARIB STD-B10, Part 3, 5.2.3

nordig_logical_channel_descript
or_v1

NorDigLogicalChannelDescripto
rV1

NorDig Unified Requirements ver. 3.1.1,
12.2.9.2

nordig_logical_channel_descript
or_v2

NorDigLogicalChannelDescripto
rV2

NorDig Unified Requirements ver. 3.1.1,
12.2.9.3

NPT_endpoint_descriptor NPTEndpointDescriptor ISO/IEC 13818-6, 8.1.5

NPT_reference_descriptor NPTReferenceDescriptor ISO/IEC 13818-6, 8.1.1

NVOD_reference_descriptor NVODReferenceDescriptor ETSI EN 300 468, 6.2.26

parental_rating_descriptor ParentalRatingDescriptor ETSI EN 300 468, 6.2.28

partial_reception_descriptor PartialReceptionDescriptor ARIB STD-B10, Part 2, 6.2.32

partial_transport_stream_descri
ptor

PartialTransportStreamDescrip
tor

ETSI EN 300 468, 7.2.1

partialTS_time_descriptor PartialTSTimeDescriptor ARIB STD-B21, 9.1.8.3 (3)

PDC_descriptor PDCDescriptor ETSI EN 300 468, 6.2.30

prefetch_descriptor PrefetchDescriptor ETSI TS 101 812, 10.8.3.2

private_data_indicator_descript
or

PrivateDataIndicatorDescripto
r

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.28

private_data_specifier_descript
or

PrivateDataSpecifierDescripto
r

ETSI EN 300 468, 6.2.31

protection_message_descriptor ProtectionMessageDescriptor ETSI TS 102 809, 9.3.3

quality_extension_descriptor QualityExtensionDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.119 and
ISO/ISC 23001-10

Version 3.38-3816 TSDuck Developer’s Guide

147

XML name C++ class Defining document

RAR_over_DVB_stream_descriptor RARoverDVBstreamDescriptor ETSI TS 102 323, 5.3.5

RAR_over_IP_descriptor RARoverIPDescriptor ETSI TS 102 323, 5.3.6

redistribution_control_descript
or

RedistributionControlDescript
or

ATSC A/65, 6.9.12

reference_descriptor ReferenceDescriptor ARIB STD-B10, Part 3, 5.2.2

registration_descriptor RegistrationDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.8

related_content_descriptor RelatedContentDescriptor ETSI TS 102 323, 10.3

RNT_scan_descriptor RNTScanDescriptor ETSI TS 102 323, 5.3.7

S2_satellite_delivery_system_de
scriptor

S2SatelliteDeliverySystemDesc
riptor

ETSI EN 300 468, 6.2.13.3

S2X_satellite_delivery_system_d
escriptor

S2XSatelliteDeliverySystemDes
criptor

ETSI EN 300 468, 6.4.6.5

S2Xv2_satellite_delivery_system
_descriptor

S2Xv2SatelliteDeliverySystemD
escriptor

ETSI EN 300 468, 6.4.6.5.3

satellite_delivery_system_descr
iptor

SatelliteDeliverySystemDescri
ptor

ETSI EN 300 468, 6.2.13.2

scheduling_descriptor SchedulingDescriptor ETSI TS 102 006, 9.5.2.9

scrambling_descriptor ScramblingDescriptor ETSI EN 300 468, 6.2.32

series_descriptor SeriesDescriptor ARIB STD-B10, Part 2, 6.2.33

service_availability_descriptor ServiceAvailabilityDescriptor ETSI EN 300 468, 6.2.34

service_descriptor ServiceDescriptor ETSI EN 300 468, 6.2.33

service_group_descriptor ServiceGroupDescriptor ARIB STD-B10, Part 2, 6.2.49

service_identifier_descriptor ServiceIdentifierDescriptor ETSI TS 102 809, 6.2.1

service_list_descriptor ServiceListDescriptor ETSI EN 300 468, 6.2.35

service_location_descriptor ServiceLocationDescriptor ATSC A/65, 6.9.5

service_move_descriptor ServiceMoveDescriptor ETSI EN 300 468, 6.2.34

service_prominence_descriptor DVBServiceProminenceDescripto
r

ETSI EN 300 468, 6.4.18

service_relocated_descriptor ServiceRelocatedDescriptor ETSI EN 300 468, 6.4.9

SH_delivery_system_descriptor SHDeliverySystemDescriptor ETSI EN 300 468, 6.4.6.2

short_event_descriptor ShortEventDescriptor ETSI EN 300 468, 6.2.37

short_node_information_descript
or

ShortNodeInformationDescripto
r

ARIB STD-B10, Part 3, 5.2.4

short_smoothing_buffer_descript
or

ShortSmoothingBufferDescripto
r

ETSI EN 300 468, 6.2.38

SI_parameter_descriptor SIParameterDescriptor ARIB STD-B10, Part 2, 6.2.35

SI_prime_TS_descriptor SIPrimeTSDescriptor ARIB STD-B10, Part 2, 6.2.38

simple_application_boundary_des
criptor

SimpleApplicationBoundaryDesc
riptor

ETSI TS 102 809, 5.3.8

simple_application_location_des
criptor

SimpleApplicationLocationDesc
riptor

ETSI TS 102 809, 5.3.7

TSDuck Developer’s Guide Version 3.38-3816

148

XML name C++ class Defining document

SL_descriptor SLDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.42

smoothing_buffer_descriptor SmoothingBufferDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.30

splice_avail_descriptor SpliceAvailDescriptor ANSI/SCTE 35, 10.3.1

splice_DTMF_descriptor SpliceDTMFDescriptor ANSI/SCTE 35, 10.3.2

splice_segmentation_descriptor SpliceSegmentationDescriptor ANSI/SCTE 35, 10.3.3

splice_time_descriptor SpliceTimeDescriptor ANSI/SCTE 35, 10.3.4

SSU_enhanced_message_descriptor SSUEnhancedMessageDescriptor ETSI TS 102 006, 9.5.2.14

SSU_event_name_descriptor SSUEventNameDescriptor ETSI TS 102 006, 9.5.2.11

SSU_location_descriptor SSULocationDescriptor ETSI TS 102 006, 9.5.2.7

SSU_message_descriptor SSUMessageDescriptor ETSI TS 102 006, 9.5.2.12

SSU_subgroup_association_descri
ptor

SSUSubgroupAssociationDescrip
tor

ETSI TS 102 006, 9.5.2.8

SSU_uri_descriptor SSUURIDescriptor ETSI TS 102 006, 9.5.2.15

STC_reference_descriptor STCReferenceDescriptor ARIB STD-B10, Part 3, 5.2.5

STD_descriptor STDDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.32

stereoscopic_program_info_descr
iptor

StereoscopicProgramInfoDescri
ptor

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.86

stereoscopic_video_info_descrip
tor

StereoscopicVideoInfoDescript
or

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.88

stream_event_descriptor StreamEventDescriptor ISO/IEC 13818-6, 8.3

stream_identifier_descriptor StreamIdentifierDescriptor ETSI EN 300 468, 6.2.39

stream_mode_descriptor StreamModeDescriptor ISO/IEC 13818-6, 8.2

subtitling_descriptor SubtitlingDescriptor ETSI EN 300 468, 6.2.41

supplementary_audio_descriptor SupplementaryAudioDescriptor ETSI EN 300 468, 6.4.11

SVC_extension_descriptor SVCExtensionDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.76

system_clock_descriptor SystemClockDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.20

system_management_descriptor SystemManagementDescriptor ARIB STD-B10, Part 2, 6.2.21

T2_delivery_system_descriptor T2DeliverySystemDescriptor ETSI EN 300 468, 6.4.6.3

T2MI_descriptor T2MIDescriptor ETSI EN 300 468, 6.4.14

target_background_grid_descript
or

TargetBackgroundGridDescripto
r

ISO/IEC 13818-1, ITU-T H.222.0, 2.6.12

target_IP_address_descriptor TargetIPAddressDescriptor ETSI EN 301 192, 8.4.5.8

target_IP_slash_descriptor TargetIPSlashDescriptor ETSI EN 301 192, 8.4.5.9

target_IP_source_slash_descript
or

TargetIPSourceSlashDescriptor ETSI EN 301 192, 8.4.5.10

target_IPv6_address_descriptor TargetIPv6AddressDescriptor ETSI EN 301 192, 8.4.5.11

target_IPv6_slash_descriptor TargetIPv6SlashDescriptor ETSI EN 301 192, 8.4.5.12

target_IPv6_source_slash_descri
ptor

TargetIPv6SourceSlashDescript
or

ETSI EN 301 192, 8.4.5.13

Version 3.38-3816 TSDuck Developer’s Guide

149

XML name C++ class Defining document

target_MAC_address_descriptor TargetMACAddressDescriptor ETSI EN 301 192, 8.4.5.6

target_MAC_address_range_descri
ptor

TargetMACAddressRangeDescript
or

ETSI EN 301 192, 8.4.5.7

target_region_descriptor TargetRegionDescriptor ETSI EN 300 468, 6.4.12

target_region_name_descriptor TargetRegionNameDescriptor ETSI EN 300 468, 6.4.13

target_serial_number_descriptor TargetSerialNumberDescriptor ETSI EN 301 192, 8.4.5.4

target_smartcard_descriptor TargetSmartcardDescriptor ETSI EN 301 192, 8.4.5.5

telephone_descriptor TelephoneDescriptor ETSI EN 300 468, 6.2.42

teletext_descriptor TeletextDescriptor ETSI EN 300 468, 6.2.43

terrestrial_delivery_system_des
criptor

TerrestrialDeliverySystemDesc
riptor

ETSI EN 300 468, 6.2.13.4

time_shifted_event_descriptor TimeShiftedEventDescriptor ETSI EN 300 468, 6.2.44

time_slice_fec_identifier_descr
iptor

TimeSliceFECIdentifierDescrip
tor

ETSI EN 301 192, 9.5

transport_profile_descriptor TransportProfileDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.93

transport_protocol_descriptor TransportProtocolDescriptor ETSI TS 101 812, 10.8.1

transport_stream_descriptor TransportStreamDescriptor ETSI EN 300 468, 6.2.46

TS_information_descriptor TSInformationDescriptor ARIB STD-B10, Part 2, 6.2.42

TTML_subtitling_descriptor TTMLSubtitlingDescriptor ETSI EN 303 560, 5.2.1.1

TVA_id_descriptor TVAIdDescriptor ETSI TS 102 323, 11.2.4

update_descriptor UpdateDescriptor ETSI TS 102 006, 9.5.2.6

URI_linkage_descriptor URILinkageDescriptor ETSI TS 101 162

VBI_data_descriptor VBIDataDescriptor ETSI EN 300 468, 6.2.47

VBI_teletext_descriptor VBITeletextDescriptor ETSI EN 300 468, 6.2.48

video_decode_control_descriptor VideoDecodeControlDescriptor ARIB STD-B10, Part 2, 6.2.30

video_depth_range_descriptor VideoDepthRangeDescriptor ETSI EN 300 468, 6.4.16

video_stream_descriptor VideoStreamDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.2

video_window_descriptor VideoWindowDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.14

virtual_segmentation_descriptor VirtualSegmentationDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.120

vvc_subpictures_descriptor VVCSubpicturesDescriptor ETSI EN 300 468, 6.4.17

VVC_timing_and_HRD_descriptor VVCTimingAndHRDDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.131

VVC_video_descriptor VVCVideoDescriptor ISO/IEC 13818-1, ITU-T H.222.0, 2.6.129

TSDuck Developer’s Guide Version 3.38-3816

150

Appendix B: License
TSDuck is released under the terms of the license which is commonly referred to as "BSD 2-Clause License" or
"Simplified BSD License" or "FreeBSD License". See http://opensource.org/licenses/BSD-2-Clause.

Copyright © 2005-2024, Thierry Lelégard
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Version 3.38-3816 TSDuck Developer’s Guide

151

http://opensource.org/licenses/BSD-2-Clause

Appendix C: References

C.1. Acronyms and abbreviations

ABI Application Binary Interface

API Application Programming Interface

BOM Byte Order Mark (a feature of UTF-16 and UTF-32)

DRY Don’t Repeat Yourself (a good practice)

FOSS Free and Open Source Software

GCC GNU Compiler Collection

GPL GNU General Public License

IDE Integrated Development Environment (e.g. Eclipse, MS Visual Studio)

LGPL Lesser GPL

MSC Microsoft C/C++ Compiler

MSVC Microsoft Visual C/C++

NIH Not Invented Here (a bad practice)

OOD Object-Oriented Design

OOP Object-Oriented Programming

RTFM The Most Important Acronym For Developers (yes, it is)

RTTI Run-Time Type Information (C++)

SFINAE Substitution Failure Is Not An Error (C++)

STL Standard Template Library (C++)

TDD Test-Driven Development

UTF Unicode Transformation Format (UTF-8, UTF-16, UTF-32, etc.)

XP eXtreme Programming

Bibliography

▪ [CERT-C] "SEI CERT C Coding Standard, Rules for Developing Safe, Reliable and Secure Systems", Software
Engineering Institute, Carnegie Mellon University, 2016 Edition.

▪ [CERT-CPP] "SEI CERT C Coding Standard, Rules for Developing Safe, Reliable and Secure Systems in C", Aaron
Ballman, Software Engineering Institute, Carnegie Mellon University, 2016 Edition.

▪ [CPPREF] http://en.cppreference.com/, Online reference of the C++ language and standard library.

▪ [GAMMA] "Design Patterns, Elements of Reusable Object-Oriented Software", Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides, Addison-Wesley, 1995.

▪ [ISO-14882] ISO/IEC 14882, "Programming Languages - C", 1998 (the C98 standard).

▪ [ISO-14882-11] ISO/IEC 14882:2011, "Programming Languages - C", 2011 (the C11 standard).

▪ [ISO-14882-14] ISO/IEC 14882:2014, "Programming Languages - C", 2014 (the C14 standard).

▪ [ISO-14882-17] ISO/IEC 14882:2017, "Programming Languages - C", 2017 (the C17 standard).

TSDuck Developer’s Guide Version 3.38-3816

152

http://en.cppreference.com/

▪ [JOSUTTIS] "The C++ Standard Library, A Tutorial and Reference", Nicolai M. Josuttis, Addison-Wesley, 1999.

▪ [MEYERS-EFF] "Effective C++, Third Edition, 55 Specific Ways to Improve Your Programs and Designs", Scott
Meyers, Addison-Wesley, 2005.

▪ [MEYERS-MORE] "More Effective C++, 35 New Ways to Improve Your Programs and Designs", Scott Meyers,
Addison-Wesley, 2008.

▪ [MEYERS-STL] "Effective STL, 50 Specific Ways to Improve Your Use of the Standard Template Library", Scott
Meyers, Addison-Wesley, 2001.

▪ [STROUSTRUP] "The C++ Programming Language, Special Edition", Bjarne Stroustrup, Addison-Wesley, 2000.

▪ [TSDuck] TSDuck Web site, https://tsduck.io/

▪ [TSDuck-Issues] TSDuck issues tracker and discussion forum, https://github.com/tsduck/tsduck/issues

▪ [TSDuck-Source] TSDuck source code repository, https://github.com/tsduck/tsduck

Version 3.38-3816 TSDuck Developer’s Guide

153

https://tsduck.io/
https://github.com/tsduck/tsduck/issues
https://github.com/tsduck/tsduck

	TSDuck Developer’s Guide
	Contents
	Preface
	Chapter 1. Building and Installing TSDuck
	1.1. Building TSDuck
	1.1.1. Tested systems
	1.1.2. Building on UNIX systems (Linux, macOS, BSD)
	1.1.2.1. Pre-requisites
	1.1.2.2. C++ compiler requirements
	1.1.2.3. Hardware device libraries
	1.1.2.4. Using make on BSD systems
	1.1.2.5. Building the TSDuck binaries alone
	1.1.2.6. Building without specialized dependencies
	1.1.2.7. Building with specific debug capabilities
	1.1.2.8. Displaying full build commands
	1.1.2.9. Building the TSDuck installation packages
	1.1.2.10. For packagers of Linux distros
	1.1.2.11. Installing in non-standard locations
	1.1.2.12. Using pkgconfig after installation
	1.1.2.13. Running from the build location

	1.1.3. Building on Windows systems
	1.1.3.1. Pre-requisites
	1.1.3.2. Building the binaries without installer
	1.1.3.3. Building the Windows installers
	1.1.3.4. Installing in non-standard locations
	1.1.3.5. Running from the build location

	1.1.4. Installer files summary

	1.2. Building the documentation
	1.2.1. Building on UNIX systems (Linux, macOS, BSD)
	1.2.2. Building on Windows

	1.3. Installing TSDuck
	1.3.1. Installing on Windows
	1.3.1.1. Using winget
	1.3.1.2. Download an installer

	1.3.2. Installing on macOS
	1.3.3. Installing on Linux
	1.3.4. Installing on BSD systems

	Chapter 2. Developing Applications with TSDuck
	2.1. Building an application with the TSDuck library
	2.1.1. Pre-requisites
	2.1.2. Building applications on UNIX systems (Linux, macOS, BSD)
	2.1.3. Building applications on Windows

	2.2. Overview of the TSDuck library
	2.2.1. C++ features
	2.2.1.1. Portability issues
	2.2.1.2. C++ strings
	2.2.1.3. Unicode strings
	2.2.1.4. Binary data
	2.2.1.5. Singletons and static data
	2.2.1.6. Error reporting
	2.2.1.7. Exceptions
	2.2.1.8. Pseudo-enumeration data
	2.2.1.9. Command-line arguments
	2.2.1.10. XML data
	2.2.1.11. JSON data

	2.2.2. Cryptography
	2.2.3. Operating system features
	2.2.3.1. Miscelleaneous system utilities
	2.2.3.2. Time
	2.2.3.3. Multithreading
	2.2.3.4. Virtual memory
	2.2.3.5. Processes
	2.2.3.6. Networking
	2.2.3.7. Shared libraries
	2.2.3.8. Smart-card interface
	2.2.3.9. Windows specificities

	2.2.4. MPEG features
	2.2.4.1. Transport streams
	2.2.4.2. Audio, video and PES packets

	2.2.5. Signalization
	2.2.5.1. Binary, specialized and XML formats
	2.2.5.2. Demux and packetization
	2.2.5.3. Application preferences contexts

	2.2.6. DVB SimulCrypt protocols
	2.2.7. Conditional access systems
	2.2.8. Other forms of demux
	2.2.9. Digital TV tuners
	2.2.10. Interface to Dektec devices

	2.3. Java and Python bindings
	2.3.1. Overview
	2.3.2. Support classes
	2.3.2.1. TSDuck execution context
	2.3.2.2. Reporting classes
	2.3.2.3. Resource monitoring
	2.3.2.4. Plugin events

	2.3.3. Application/plugin communication in Java or Python
	2.3.4. Using TSDuck Java bindings
	2.3.4.1. Linux
	2.3.4.2. macOS
	2.3.4.3. Windows

	2.3.5. Using TSDuck Python bindings
	2.3.5.1. Linux
	2.3.5.2. macOS
	2.3.5.3. Windows
	2.3.5.4. Python prerequisites
	2.3.5.5. Implementation notes

	2.4. Developing a TSDuck plugin
	2.4.1. Plugin development workflow
	2.4.1.1. Developing independent third-party plugins
	2.4.1.2. Developing plugins for the TSDuck project

	2.4.2. Development guidelines
	2.4.2.1. Class hierarchy
	2.4.2.2. Invoking tsp from a plugin, the ts::TSP callbacks
	2.4.2.3. Joint termination support

	2.5. Developing a TSDuck extension
	2.5.1. Files in an extension
	2.5.2. The extension dynamic library
	2.5.2.1. Identification of the extension
	2.5.2.2. Providing an XML model file for additional tables and descriptors
	2.5.2.3. Providing a names files for additional identifiers
	2.5.2.4. Providing support for additional tables
	2.5.2.5. Providing support for additional descriptors
	2.5.2.6. Implementing advanced section filtering capabilities
	2.5.2.7. Providing support for additional Conditional Access Systems

	2.5.3. Building cross-platform binary installers for an extension

	Chapter 3. Contributing to TSDuck Development
	3.1. Transparency of contributions
	3.2. Contributor workflow
	3.2.1. Initial setup
	3.2.2. Contributing code
	3.2.3. Testing your code

	3.3. Integrator workflow

	Chapter 4. Maintaining TSDuck Code
	4.1. Testing TSDuck
	4.1.1. Testing overview
	4.1.2. Organization of the tests
	4.1.3. The TSDuck library test suite
	4.1.4. The TSDuck tools and plugins test suite
	4.1.4.1. Structure of the test suite
	4.1.4.2. Adding new tests
	4.1.4.3. Testing a development version
	4.1.4.4. Large files

	4.2. Automation
	4.2.1. Continuous integration
	4.2.2. Nightly builds
	4.2.3. Release creation
	4.2.3.1. Building the various binaries
	4.2.3.2. Creating the GitHub release
	4.2.3.3. Creating the HomeBrew release
	4.2.3.4. Updating the version number

	4.2.4. Cleanup of long-standing issues

	4.3. TSP design
	4.3.1. Plugin Executors
	4.3.2. Transport packets buffer

	4.4. Adding PSI/SI tables or descriptors
	4.4.1. Code base selection
	4.4.1.1. Extended descriptors
	4.4.1.2. Private descriptors (DVB)
	4.4.1.3. Table-specific descriptors

	4.4.2. Affiliation to a standard
	4.4.3. Declaring identifiers
	4.4.4. XML definition
	4.4.5. C++ class
	4.4.6. Names file
	4.4.7. Documentation
	4.4.7.1. User’s guide
	4.4.7.2. Programming reference

	4.4.8. Tests

	Chapter 5. Coding guidelines
	5.1. Rationale for coding guidelines
	5.2. Classification of coding guidelines
	5.3. Generic coding guidelines
	5.3.1. Generic coding rules and recommendations
	5.3.1.1. Software architecture
	5.3.1.2. Source code structure
	5.3.1.3. Revision control system
	5.3.1.4. Internationalization
	5.3.1.5. Modularity and compatibility
	5.3.1.6. Naming conventions
	5.3.1.7. Coding principles
	5.3.1.8. Secure coding
	5.3.1.9. Software evolution
	5.3.1.10. Compilation errors and warnings
	5.3.1.11. Makefiles
	5.3.1.12. Unit testing
	5.3.1.13. Integration of open source software

	5.3.2. Generic coding conventions
	5.3.2.1. Control characters
	5.3.2.2. Character encoding

	5.4. C++ coding guidelines
	5.4.1. C++ coding rules and recommendations
	5.4.1.1. Language selection
	5.4.1.2. Modularity
	5.4.1.3. Naming and syntax formatting
	5.4.1.4. Coding style
	5.4.1.5. Strict typing
	5.4.1.6. Assertions
	5.4.1.7. Secure coding
	5.4.1.8. C++ classes
	5.4.1.9. C++ constructors and destructors
	5.4.1.10. C++ operators
	5.4.1.11. C++ object management

	5.4.2. C++ coding conventions
	5.4.2.1. Source code formatting
	5.4.2.2. Modularity
	5.4.2.3. Naming conventions
	5.4.2.4. Syntax formatting conventions
	5.4.2.5. Doxygen self-documentation

	Appendix A: PSI/SI Signalization Reference
	A.1. PSI/SI tables
	A.2. PSI/SI descriptors

	Appendix B: License
	Appendix C: References
	C.1. Acronyms and abbreviations
	Bibliography

